Contents

1 **Univariate Volatility Models** 3
 1.1 Introduction to ARCH Models .. 3
 1.2 ARCH Modeling .. 6
 1.3 Forecasting ... 18
 1.4 Volatility Forecasting .. 22
 1.5 Value-at-Risk Forecasting ... 29
 1.6 Volatility Scenarios ... 32
 1.7 Mean Models ... 38
 1.8 Volatility Processes ... 83
 1.9 Using the Fixed Variance process 144
 1.10 Distributions ... 149
 1.11 Model Results ... 172
 1.12 Utilities ... 186
 1.13 Theoretical Background .. 186

2 **Bootstrapping** 187
 2.1 Bootstrap Examples ... 187
 2.2 Confidence Intervals ... 192
 2.3 Covariance Estimation ... 197
 2.4 Low-level Interfaces ... 198
 2.5 Semiparametric Bootstraps ... 200
 2.6 Parametric Bootstraps ... 201
 2.7 Independent, Identical Distributed Data (i.i.d.) 202
 2.8 Independent Samples .. 211
 2.9 Time-series Bootstraps .. 220
 2.10 References ... 246

3 **Multiple Comparison Procedures** 247
 3.1 Multiple Comparisons .. 247
 3.2 Module Reference .. 254
 3.3 References ... 261

4 **Unit Root Testing** 263
 4.1 Introduction ... 263
 4.2 Unit Root Testing .. 264
 4.3 The Unit Root Tests .. 273
The ARCH toolbox contains routines for:

- Univariate volatility models;
- Bootstrapping;
- Multiple comparison procedures; and
- Unit root tests.

Future plans are to continue to expand this toolbox to include additional routines relevant for the analysis of financial data.
arch.univariate provides both high-level (arch.arch_model()) and low-level methods (see Mean Models) to specify models. All models can be used to produce forecasts either analytically (when tractable) or using simulation-based methods (Monte Carlo or residual Bootstrap).

1.1 Introduction to ARCH Models

ARCH models are a popular class of volatility models that use observed values of returns or residuals as volatility shocks. A basic GARCH model is specified as

\begin{align*}
 r_t &= \mu + \epsilon_t \\
 \epsilon_t &= \sigma_t \epsilon_t \\
 \sigma_t^2 &= \omega + \alpha \epsilon_{t-1}^2 + \beta \sigma_{t-1}^2
\end{align*}

A complete ARCH model is divided into three components:

- a *mean model*, e.g., a constant mean or an ARX;
- a *volatility process*, e.g., a GARCH or an EGARCH process; and
- a *distribution* for the standardized residuals.

In most applications, the simplest method to construct this model is to use the constructor function `arch_model()`.

```python
import datetime as dt
import pandas_datareader.data as web
from arch import arch_model

start = dt.datetime(2000, 1, 1)
end = dt.datetime(2014, 1, 1)
sp500 = web.DataReader('^GSPC', 'yahoo', start=start, end=end)
returns = 100 * sp500['Adj Close'].pct_change().dropna()
am = arch_model(returns)
```
Alternatively, the same model can be manually assembled from the building blocks of an ARCH model

```python
from arch import ConstantMean, GARCH, Normal

am = ConstantMean(returns)
am.volatility = GARCH(1, 0, 1)
am.distribution = Normal()
```

In either case, model parameters are estimated using

```python
res = am.fit()
```

with the following output

```
Iteration:  1,  Func. Count:  6,  Neg. LLF: 5159.58323938
Iteration:  2,  Func. Count: 16,  Neg. LLF: 5156.09760149
Iteration:  3,  Func. Count: 24,  Neg. LLF: 5152.29989336
Iteration:  5,  Func. Count: 38,  Neg. LLF: 5143.86337547
Iteration:  6,  Func. Count: 45,  Neg. LLF: 5143.02966168
Iteration:  8,  Func. Count: 60,  Neg. LLF: 5142.07138907
Iteration:  9,  Func. Count: 67,  Neg. LLF: 5141.416653
Iteration: 10,  Func. Count: 73,  Neg. LLF: 5141.3922288
Iteration: 12,  Func. Count: 85,  Neg. LLF: 5141.39023359
Optimization terminated successfully.  (Exit mode 0)
Current function value: 5141.39023359
Iterations: 12
Function evaluations: 85
Gradient evaluations: 12
```

```python
print(res.summary())
```

yields

```
Constant Mean - GARCH Model Results
================================================================================
Dep. Variable: Adj Close  R-squared: -0.001
Mean Model: Constant Mean  Adj. R-squared: -0.001
Vol Model: GARCH  Log-Likelihood: -5141.39
Distribution: Normal  AIC: 10290.8
Method: Maximum Likelihood  BIC: 10315.4
No. Observations: 3520
Date: Fri, Dec 02 2016  Df Residuals: 3516
Mean Model
volatility
================================================================================
coef std err   t      P>|t|     95.0% Conf. Int.
--------------------------------------------------------------------------------
mu  0.0531  1.487e-02  3.569 3.581e-04 [ 2.392e-02, 8.220e-02]
```

(continues on next page)
1.1.1 Model Constructor

While models can be carefully specified using the individual components, most common specifications can be specified using a simple model constructor.

```python
arch.arch_model(y: Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series, NoneType], x: Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series, NoneType] = None, mean: str = 'Constant', lags: Union[int, List[int], numpy.ndarray, NoneType] = 0, vol: str = 'Garch', p: Union[int, List[int]] = 1, o: int = 0, q: int = 1, power: float = 2.0, dist: str = 'Normal', hold_back: Union[int, NoneType] = None, rescale: Union[bool, NoneType] = None) → arch.univariate.mean.HARX
```

Convenience function to simplify initialization of ARCH models

Parameters

- **y** ([ndarray, Series, None]) The dependent variable
- **x** ([np.array, DataFrame], optional) Exogenous regressors. Ignored if model does not permit exogenous regressors.
- **lags** [int or list (int), optional] Either a scalar integer value indicating lag length or a list of integers specifying lag locations.
- **vol** [str, optional] Name of the volatility model. Currently supported options are: ‘GARCH’ (default), ‘ARCH’, ‘EGARCH’, ‘FIARCH’ and ‘HARCH’
- **p** [int, optional] Lag order of the symmetric innovation
- **o** [int, optional] Lag order of the asymmetric innovation
- **q** [int, optional] Lag order of lagged volatility or equivalent
- **power** [float, optional] Power to use with GARCH and related models
- **dist** [int, optional] Name of the error distribution. Currently supported options are:
 - Normal: ‘normal’, ‘gaussian’ (default)
 - Students’s t: ‘t’, ‘studentst’
 - Skewed Student’s t: ‘skewstudent’, ‘skewt’
 - Generalized Error Distribution: ‘ged’, ‘generalized error’
- **hold_back** [int] Number of observations at the start of the sample to exclude when estimating model parameters. Used when comparing models with different lag lengths to estimate on the common sample.
- **rescale** [bool] Flag indicating whether to automatically rescale data if the scale of the data is likely to produce convergence issues when estimating model parameters. If False, the model is estimated on the data without transformation. If True, then y is rescaled and the new scale is reported in the estimation results.
Returns

model [ARCHModel] Configured ARCH model

Notes

Input that are not relevant for a particular specification, such as *lags* when *mean*='zero', are silently ignored.

Examples

```python
>>> import datetime as dt
>>> import pandas_datareader.data as web

>>> djia = web.get_data_fred('DJIA')

>>> returns = 100 * djia['DJIA'].pct_change().dropna()
```

A basic GARCH(1,1) with a constant mean can be constructed using only the return data

```python
>>> from arch.univariate import arch_model

>>> am = arch_model(returns)
```

Alternative mean and volatility processes can be directly specified

```python
>>> am = arch_model(returns, mean='AR', lags=2, vol='harch', p=[1, 5, 22])
```

This example demonstrates the construction of a zero mean process with a TARCH volatility process and Student t error distribution

```python
>>> am = arch_model(returns, mean='zero', p=1, o=1, q=1,
...                  power=1.0, dist='StudentsT')
```

Return type **HARX**

1.2 ARCH Modeling

This setup code is required to run in an IPython notebook

```python
import warnings
warnings.simplefilter('ignore')

%matplotlib inline
import matplotlib.pyplot as plt
import seaborn

seaborn.set_style('darkgrid')
plt.rcParams("figure", figsize=(16, 6))
plt.rcParams("savefig", dpi=90)
plt.rcParams("font",family="sans-serif")
plt.rcParams("font",size=14)
```
1.2.1 Setup

These examples will all make use of financial data from Yahoo! Finance. This data set can be loaded from `arch.data.sp500`.

```python
import datetime as dt
import arch.data.sp500
st = dt.datetime(1988, 1, 1)
en = dt.datetime(2018, 1, 1)
data = arch.data.sp500.load()
market = data['Adj Close']
returns = 100 * market.pct_change().dropna()
figure = returns.plot()
```

1.2.2 Specifying Common Models

The simplest way to specify a model is to use the model constructor `arch.arch_model` which can specify most common models. The simplest invocation of `arch` will return a model with a constant mean, GARCH(1,1) volatility process and normally distributed errors.

\[
\begin{align*}
 r_t &= \mu + \epsilon_t \\
 \sigma_t^2 &= \omega + \alpha \epsilon_{t-1}^2 + \beta \sigma_{t-1}^2 \\
 \epsilon_t &= \sigma_t \epsilon_t, \quad \epsilon_t \sim N(0,1)
\end{align*}
\]

The model is estimated by calling `fit`. The optional inputs `iter` controls the frequency of output form the optimizer, and `disp` controls whether convergence information is returned. The results class returned offers direct access to the estimated parameters and related quantities, as well as a summary of the estimation results.

GARCH (with a Constant Mean)

The default set of options produces a model with a constant mean, GARCH(1,1) conditional variance and normal errors.
from arch import arch_model

am = arch_model(returns)
res = am.fit(update_freq=5)
print(res.summary())

Iteration: 10, Func. Count: 72, Neg. LLF: 6936.718529994181
Optimization terminated successfully. (Exit mode 0)
Current function value: 6936.718476989043
Iterations: 11
Function evaluations: 79
Gradient evaluations: 11

Constant Mean - GARCH Model Results

<table>
<thead>
<tr>
<th>Dep. Variable: Adj Close R-squared:</th>
<th>-0.001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean Model: Constant Mean Adj. R-squared:</td>
<td>-0.001</td>
</tr>
<tr>
<td>Vol Model: GARCH Log-Likelihood:</td>
<td>-6936.72</td>
</tr>
<tr>
<td>Distribution: Normal AIC:</td>
<td>13881.4</td>
</tr>
<tr>
<td>Method: Maximum Likelihood BIC:</td>
<td>13907.5</td>
</tr>
<tr>
<td>No. Observations:</td>
<td>5030</td>
</tr>
<tr>
<td>Date: Wed, Jan 29 2020 Df Residuals:</td>
<td>5026</td>
</tr>
<tr>
<td>Time: 18:15:28 Df Model:</td>
<td>4</td>
</tr>
</tbody>
</table>

Mean Model

| coef | std err | t | P>|t| | 95.0% Conf. Int. |
|------|---------|-------|------|----------------|
| mu | 0.0564 | 1.149e-02 | 4.906 | 9.302e-07 [3.384e-02, 7.887e-02] |

Volatility Model

| coef | std err | t | P>|t| | 95.0% Conf. Int. |
|------|---------|-------|------|----------------|
| omega| 0.0175 | 4.683e-03 | 3.738 | 1.854e-04 [8.328e-03, 2.669e-02] |
| alpha[1]| 0.1022 | 1.301e-02 | 7.852 | 4.105e-15 [7.665e-02, 0.128] |
| beta[1]| 0.8852 | 1.380e-02 | 64.125 | 0.000 [0.858, 0.912] |

Covariance estimator: robust

plot() can be used to quickly visualize the standardized residuals and conditional volatility.

fig = res.plot(annualize='D')
GJR-GARCH

Additional inputs can be used to construct other models. This example sets \(o \) to 1, which includes one lag of an asymmetric shock which transforms a GARCH model into a GJR-GARCH model with variance dynamics given by

\[
\sigma_t^2 = \omega + \alpha_{t-1}^2 + \gamma \epsilon_{t-1}^2 I_{\epsilon_{t-1}<0} + \beta \sigma_{t-1}^2
\]

where \(I \) is an indicator function that takes the value 1 when its argument is true.

The log likelihood improves substantially with the introduction of an asymmetric term, and the parameter estimate is highly significant.

[5]:
```python
am = arch_model(returns, p=1, o=1, q=1)
res = am.fit(update_freq=5, disp='off')
print(res.summary())
```

(continues on next page)
beta[1] 0.8922 1.458e-02 61.200 0.000 [0.864, 0.921]
===
Covariance estimator: robust

TARCH/ZARCH

TARCH (also known as ZARCH) model the volatility using absolute values. This model is specified using `power=1`. 0 since the default power, 2, corresponds to variance processes that evolve in squares.

The volatility process in a TARCH model is given by

$$\sigma_t = \omega + \alpha |\epsilon_{t-1}| + \gamma |\epsilon_{t-1}| I[\epsilon_{t-1} < 0] + \beta \sigma_{t-1}$$

More general models with other powers (κ) have volatility dynamics given by

$$\sigma_t^\kappa = \omega + \alpha |\epsilon_{t-1}|^\kappa + \gamma |\epsilon_{t-1}|^\kappa I[\epsilon_{t-1} < 0] + \beta \sigma_{t-1}^\kappa$$

where the conditional variance is $(\sigma_t^\kappa)^{2/\kappa}$.

The TARCH model also improves the fit, although the change in the log likelihood is less dramatic.

```python
[6]: am = arch_model(returns, p=1, o=1, q=1, power=1.0)
res = am.fit(update_freq=5)
print(res.summary())
```

<table>
<thead>
<tr>
<th>Mean Model</th>
<th>Volatility Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>mu 0.0143</td>
<td>1.091e-02 1.311 0.190 [-7.080e-03,3.570e-02]</td>
</tr>
<tr>
<td>omega 0.0258</td>
<td>4.100e-03 6.299 2.986e-10 [1.779e-02,3.386e-02]</td>
</tr>
<tr>
<td>alpha[1] 3.0844e-09</td>
<td>9.156e-03 3.369e-07 1.000 [-1.794e-02,1.794e-02]</td>
</tr>
<tr>
<td>gamma[1] 0.1707</td>
<td>1.601e-02 10.664 1.499e-26 [0.139, 0.202]</td>
</tr>
<tr>
<td>beta[1] 0.9098</td>
<td>9.672e-03 94.066 0.000 [0.891, 0.929]</td>
</tr>
</tbody>
</table>
Covariance estimator: robust

Student’s T Errors

Financial returns are often heavy tailed, and a Student’s T distribution is a simple method to capture this feature. The call to `arch` changes the distribution from a Normal to a Students’s T.

The standardized residuals appear to be heavy tailed with an estimated degree of freedom near 10. The log-likelihood also shows a large increase.

```python
[7]: am = arch_model(returns, p=1, o=1, q=1, power=1.0, dist='StudentsT')
res = am.fit(update_freq=5)
print(res.summary())
```

<table>
<thead>
<tr>
<th>Iteration:</th>
<th>Func. Count:</th>
<th>Neg. LLF:</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>54</td>
<td>6726.105730454241</td>
</tr>
<tr>
<td>10</td>
<td>99</td>
<td>6722.1530898595</td>
</tr>
</tbody>
</table>

Optimization terminated successfully. (Exit mode 0)

Current function value: 6722.151180623825

Iterations: 12
Function evaluations: 113
Gradient evaluations: 11

Covariance estimator: robust
1.2.3 Fixing Parameters

In some circumstances, fixed rather than estimated parameters might be of interest. A model-result-like class can be generated using the `fix()` method. The class returned is identical to the usual model result class except that information about inference (standard errors, t-stats, etc) is not available.

In the example, I fix the parameters to a symmetric version of the previously estimated model.

```python
fixed_res = am.fix([0.0235, 0.01, 0.06, 0.0, 0.9382, 8.0])
print(fixed_res.summary())
```

<table>
<thead>
<tr>
<th>Constant Mean - TARCH/ZARCH Model Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dep. Variable: Adj Close R-squared: --</td>
</tr>
<tr>
<td>Mean Model: Constant Mean Adj. R-squared: --</td>
</tr>
<tr>
<td>Vol Model: TARCH/ZARCH Log-Likelihood: -6908.93</td>
</tr>
<tr>
<td>Distribution: Standardized Student's t AIC: 13829.9</td>
</tr>
<tr>
<td>Method: User-specified Parameters BIC: 13869.0</td>
</tr>
<tr>
<td>No. Observations: 5030</td>
</tr>
</tbody>
</table>

Mean Model

<table>
<thead>
<tr>
<th>coef</th>
</tr>
</thead>
<tbody>
<tr>
<td>mu 0.0235</td>
</tr>
</tbody>
</table>

Volatility Model

<table>
<thead>
<tr>
<th>coef</th>
</tr>
</thead>
<tbody>
<tr>
<td>omega 0.0100</td>
</tr>
<tr>
<td>alpha[1] 0.0600</td>
</tr>
<tr>
<td>gamma[1] 0.0000</td>
</tr>
<tr>
<td>beta[1] 0.9382</td>
</tr>
</tbody>
</table>

Distribution

<table>
<thead>
<tr>
<th>coef</th>
</tr>
</thead>
<tbody>
<tr>
<td>nu 8.0000</td>
</tr>
</tbody>
</table>

Results generated with user-specified parameters.
Std. errors not available when the model is not estimated.

```python
import pandas as pd
df = pd.concat([res.conditional_volatility, fixed_res.conditional_volatility], 1)
df.columns = ['Estimated', 'Fixed']
subplot = df.plot()
```
1.2.4 Building a Model From Components

Models can also be systematically assembled from the three model components:

- A mean model (arch.mean)
 - Zero mean (ZeroMean) - useful if using residuals from a model estimated separately
 - Constant mean (ConstantMean) - common for most liquid financial assets
 - Autoregressive (ARX) with optional exogenous regressors
 - Heterogeneous (HARX) autoregression with optional exogenous regressors
 - Exogenous regressors only (LS)

- A volatility process (arch.volatility)
 - ARCH (ARCH)
 - GARCH (GARCH)
 - GJR-GARCH (GARCH using o argument)
 - TARCH/ZARCH (GARCH using power argument set to 1)
 - Power GARCH and Asymmetric Power GARCH (GARCH using power)
 - Exponentially Weighted Moving Average Variance with estimated coefficient (EWMAVariance)
 - Heterogeneous ARCH (HARCH)
 - Parameterless Models
 * Exponentially Weighted Moving Average Variance, known as RiskMetrics (EWMAVariance)
 * Weighted averages of EWMAs, known as the RiskMetrics 2006 methodology (RiskMetrics2006)

- A distribution (arch.distribution)
 - Normal (Normal)
 - Standardized Students’s T (StudentsT)
Mean Models

The first choice is the mean model. For many liquid financial assets, a constant mean (or even zero) is adequate. For other series, such as inflation, a more complicated model may be required. These examples make use of Core CPI downloaded from the Federal Reserve Economic Data site.

```python
[10]: import arch.data.core_cpi
core_cpi = arch.data.core_cpi.load()
ann_inflation = 100 * core_cpi.CPILFESL.pct_change(12).dropna()
fig = ann_inflation.plot()
```

All mean models are initialized with constant variance and normal errors. For ARX models, the `lags` argument specifies the lags to include in the model.

```python
[11]: from arch.univariate import ARX
ar = ARX(ann_inflation, lags=[1, 3, 12])
print(ar.fit().summary())
```

AR - Constant Variance Model Results

| coeff | std.err | t | P>|t| | 95.0% Conf. Int. |
|--------|---------|-------|------|------------------|
| Const | 0.0402 | 2.030e-02 | 1.981 | 4.762e-02 | [4.218e-04, 8.001e-02] |
| CPILFESL[3] | -0.1798 | 4.076e-02 | -4.411 | 1.030e-05 | [-9.989e-02, -0.260] |
| CPILFESL[12] | -0.0232 | 1.370e-02 | -1.692 | 9.058e-02 | [-5.002e-02, 3.666e-03] |

(continues on next page)
Volatility Processes

Volatility processes can be added to a mean model using the `volatility` property. This example adds an ARCH(5) process to model volatility. The arguments `iter` and `disp` are used in `fit()` to suppress estimation output.

```python
[12]: from arch.univariate import ARCH, GARCH
ar.volatility = ARCH(p=5)
res = ar.fit(update_freq=0, disp='off')
print(res.summary())
```

AR - ARCH Model Results

| coef | std err | t | P>|t| | 95.0% Conf. Int. |
|----------|---------|-------|------|-----------------|
| Const | 0.0285 | 1.883e-02 | 1.513 | 0.130 [-8.411e-03, 6.541e-02] |
| CPILFESL[3] | -0.0788 | 3.855e-02 | -2.045 | 4.084e-02 [-0.154, -3.283e-03] |
| CPILFESL[12] | -0.0189 | 1.157e-02 | -1.630 | 0.103 [-4.154e-02, 0.3822e-03] |

Volatility Model

| coef | std err | t | P>|t| | 95.0% Conf. Int. |
|----------|---------|-------|------|-----------------|
| omega | 7.6869e-03 | 1.602e-03 | 4.799 | 1.591e-06 [4.548e-03, 1.083e-02] |
| alpha[1] | 0.1345 | 4.003e-02 | 3.359 | 7.826e-04 [5.600e-02, 0.213] |
| alpha[2] | 0.2280 | 6.284e-02 | 3.628 | 2.860e-04 [0.105, 0.351] |
| alpha[3] | 0.1838 | 6.801e-02 | 2.702 | 6.894e-03 [5.047e-02, 0.317] |
| alpha[4] | 0.2538 | 7.826e-02 | 3.242 | 1.185e-03 [0.100, 0.407] |
| alpha[5] | 0.1954 | 7.092e-02 | 2.756 | 5.056e-03 [5.643e-02, 0.334] |

Plotting the standardized residuals and the conditional volatility shows some large (in magnitude) errors, even when standardized.

```python
[13]: fig = res.plot()
```
Finally the distribution can be changed from the default normal to a standardized Student’s T using the distribution property of a mean model.

The Student’s t distribution improves the model, and the degree of freedom is estimated to be near 8.

```
[14]: from arch.univariate import StudentsT
    ar.distribution = StudentsT()
    res = ar.fit(update_freq=0, disp='off')
    print(res.summary())
```

```
AR - ARCH Model Results
=========================================================================================================
Dep. Variable: CPILFESL  R-squared: 0.991
Mean Model: AR  Adj. R-squared: 0.991
Vol Model: ARCH  Log-Likelihood: 142.863
Distribution: Standardized Student's t  AIC: -263.727
Method: Maximum Likelihood  BIC: -213.370
No. Observations: 719
Date: Wed, Jan 29 2020  Df Residuals: 708
Time: 18:15:32  Df Model: 11
Mean Model
===============================================================================
coef std err  t P>|t|  95.0% Conf. Int.
-------------------------------------------------------------------------------
Const 0.0312 1.861e-02 1.678 9.342e-02 [-5.254e-03,6.769e-02]
CPILFESL[3] -0.0730 3.873e-02 -1.885 5.945e-02 [-0.149,2.910e-03]
CPILFESL[12] -0.0236 1.316e-02 -1.791 7.330e-02 [-4.935e-02,2.224e-03]
Volatility Model
============================================================================
coef std err  t P>|t|  95.0% Conf. Int.
----------------------------------------------------------------------------
omega 8.7359e-03 2.063e-03 4.235 2.283e-05 [4.693e-03,1.278e-02]
alpha[1] 0.1715 5.064e-02 3.386 7.086e-04 [7.222e-02, 0.271]
alpha[2] 0.2202 6.394e-02 3.444 5.742e-04 [9.486e-02, 0.345]
```
alpha[3] 0.1547 6.327e-02 2.445 1.447e-02 [3.071e-02, 0.279]
alpha[4] 0.2117 7.287e-02 2.905 3.675e-03 [6.885e-02, 0.355]
alpha[5] 0.1959 7.852e-02 2.494 1.262e-02 [4.197e-02, 0.350]

Distribution
coef std err t P>|t| 95.0% Conf. Int.

Covariance estimator: robust

1.2.5 WTI Crude

The next example uses West Texas Intermediate Crude data from FRED. Three models are fit using alternative distributional assumptions. The results are printed, where we can see that the normal has a much lower log-likelihood than either the Standard Student’s T or the Standardized Skew Student’s T – however, these two are fairly close. The closeness of the T and the Skew T indicate that returns are not heavily skewed.

```python
from collections import OrderedDict
import arch.data.wti

crude = arch.data.wti.load()
crude_ret = 100 * crude.DCOILWTICO.dropna().pct_change().dropna()
res_normal = arch_model(crude_ret).fit(disp='off')
res_t = arch_model(crude_ret, dist='t').fit(disp='off')
res_skewt = arch_model(crude_ret, dist='skewt').fit(disp='off')
lls = pd.Series(OrderedDict([('normal', res_normal.loglikelihood), ('t', res_t.loglikelihood), ('skewt', res_skewt.loglikelihood)]))
print(lls)
params = pd.DataFrame(OrderedDict([('normal', res_normal.params), ('t', res_t.params), ('skewt', res_skewt.params)]))
print(params)

normal   -18165.858870
t         -17919.643916
skewt    -17916.669052
dtype: float64

alpha[1] 0.085627 0.064980 0.064889
beta[1] 0.909098 0.927950 0.928215
lambda NaN NaN -0.036986
mu  0.046682 0.056438 0.040928
nu NaN 6.178652 6.186528
omega 0.055806 0.048516 0.047683
```

The standardized residuals can be computed by dividing the residuals by the conditional volatility. These are plotted along with the (unstandardized, but scaled) residuals. The non-standardized residuals are more peaked in the center indicating that the distribution is somewhat more heavy tailed than that of the standardized residuals.
1.3 Forecasting

Multi-period forecasts can be easily produced for ARCH-type models using forward recursion, with some caveats. In particular, models that are non-linear in the sense that they do not evolve using squares or residuals do not normally have analytically tractable multi-period forecasts available.

All models support three methods of forecasting:

- **Analytical**: analytical forecasts are always available for the 1-step ahead forecast due to the structure of ARCH-type models. Multi-step analytical forecasts are only available for model which are linear in the square of the residual, such as GARCH or HARCH.

- **Simulation**: simulation-based forecasts are always available for any horizon, although they are only useful for horizons larger than 1 since the first out-of-sample forecast from an ARCH-type model is always fixed. Simulation-based forecasts make use of the structure of an ARCH-type model to forward simulate using the assumed distribution of residuals, e.g., a Normal or Student’s t.

- **Bootstrap**: bootstrap-based forecasts are similar to simulation based forecasts except that they make use of the standardized residuals from the actual data used in the estimation rather than assuming a specific distribution. Like simulation-base forecasts, bootstrap-based forecasts are only useful for horizons larger than 1. Additionally, the bootstrap forecasting method requires a minimal amount of in-sample data to use prior to producing the forecasts.

This document will use a standard GARCH(1,1) with a constant mean to explain the choices available for forecasting. The model can be described as

\[
\begin{align*}
 r_t &= \mu + \epsilon_t \\
 \epsilon_t &= \sigma_t \epsilon_t \\
 \sigma_t^2 &= \omega + \alpha \epsilon_{t-1}^2 + \beta \sigma_{t-1}^2 \\
 \epsilon_t &\sim N(0,1)
\end{align*}
\]

In code this model can be constructed using data from the S&P 500 using

```python
[16]:
std_resid = res_normal.resid / res_normal.conditional_volatility
unit_var_resid = res_normal.resid / res_normal.resid.std()
df = pd.concat([std_resid, unit_var_resid], 1)
df.columns = ['Std Resids', 'Unit Variance Resids']
subplot = df.plot(kind='kde', xlim=(-4, 4))
```
The model will be estimated using the first 10 years to estimate parameters and then forecasts will be produced for the final 5.

1.3.1 Analytical Forecasts

Analytical forecasts are available for most models that evolve in terms of the squares of the model residuals, e.g., GARCH, HARCH, etc. These forecasts exploit the relationship $E_t[\epsilon_{t+1}^2] = \sigma_{t+1}^2$ to recursively compute forecasts.

Variance forecasts are constructed for the conditional variances as

\[
\sigma_{t+1}^2 = \omega + \alpha \epsilon_t^2 + \beta \sigma_{t-1}^2
\]

\[
\sigma_{t+h}^2 = \omega + \alpha E_t[\epsilon_{t+h-1}^2] + \beta E_t[\sigma_{t+h-1}^2] \quad h \geq 2
\]

\[
= \omega + (\alpha + \beta) E_t[\sigma_{t+h-1}^2] \quad h \geq 2
\]

1.3.2 Simulation Forecasts

Simulation-based forecasts use the model random number generator to simulate draws of the standardized residuals, ϵ_{t+h}. These are used to generate a pre-specified number of paths of the variances which are then averaged to produce the forecasts. In models like GARCH which evolve in the squares of the residuals, there are few advantages to simulation-based forecasting. These methods are more valuable when producing multi-step forecasts from models that do not have closed form multi-step forecasts such as EGARCH models.

Assume there are B simulated paths. A single simulated path is generated using

\[
\sigma_{t+h,b}^2 = \omega + \alpha \epsilon_{t+h-1,b}^2 + \beta \sigma_{t+h-1,b}^2
\]

\[
\epsilon_{t+h,b} = \epsilon_{t+h,b} \sqrt{\sigma_{t+h,b}^2}
\]

where the simulated shocks are $\epsilon_{t+1,b}, \epsilon_{t+2,b}, \ldots, \epsilon_{t+h,b}$ where b is included to indicate that the simulations are independent across paths. Note that the first residual, ϵ_t, is in-sample and so is not simulated.

The final variance forecasts are then computed using the B simulations

\[
E_t[\epsilon_{t+h}^2] = \sigma_{t+h}^2 = B^{-1} \sum_{b=1}^B \sigma_{t+h,b}^2.
\]
1.3.3 Bootstrap Forecasts

Bootstrap-based forecasts are virtually identical to simulation-based forecasts except that the standardized residuals are generated by the model. These standardized residuals are generated using the observed data and the estimated parameters as

\[\hat{e}_t = \frac{r_t - \hat{\mu}}{\hat{\sigma}_t} \]

(1.14)

The generation scheme is identical to the simulation-based method except that the simulated shocks are drawn (i.i.d., with replacement) from \(\hat{e}_1, \hat{e}_2, \ldots, \hat{e}_t \) so that only data available at time \(t \) are used to simulate the paths.

1.3.4 Forecasting Options

The `forecast()` method is attached to a model fit result.

- **params** - The model parameters used to forecast the mean and variance. If not specified, the parameters estimated during the call to `fit` the produced result are used.
- **horizon** - A positive integer value indicating the maximum horizon to produce forecasts.
- **start** - A positive integer or, if the input to the mode is a DataFrame, a date (string, datetime, datetime64 or Timestamp). Forecasts are produced from `start` until the end of the sample. If not provided, `start` is set to the length of the input data minus 1 so that only 1 forecast is produced.
- **align** - One of ‘origin’ (default) or ‘target’ that describes how the forecasts aligned in the output. Origin aligns forecasts to the last observation used in producing the forecast, while target aligns forecasts to the observation index that is being forecast.
- **method** - One of ‘analytic’ (default), ‘simulation’ or ‘bootstrap’ that describes the method used to produce the forecasts. Not all methods are available for all horizons.
- **simulations** - A non-negative integer indicating the number of simulation to use when `method` is ‘simulation’ or ‘bootstrap’

1.3.5 Understanding Forecast Output

Any call to `forecast()` returns a `ARCHModelForecast` object with has 3 core attributes and 1 which may be useful when using simulation- or bootstrap-based forecasts.

The three core attributes are

- **mean** - The forecast conditional mean.
- **variance** - The forecast conditional variance.
- **residual_variance** - The forecast conditional variance of residuals. This will differ from `variance` whenever the model has dynamics (e.g. an AR model) for horizons larger than 1.

Each attribute contains a DataFrame with a common structure.

```python
print(forecasts.variance.tail())
```

which returns
The values in the columns h.1 are one-step ahead forecast, while values in h.2, ..., h.5 are 2, ..., 5-observation ahead forecasts. The output is aligned so that the Date column is the final data used to generate the forecast, so that h.1 in row 2013-12-31 is the one-step ahead forecast made using data up to and including December 31, 2013.

By default forecasts are only produced for observations after the final observation used to estimate the model.

```python
day = dt.timedelta(1)
print(forescasts.variance[split_date - 5 * day:split_date + 5 * day])
```

which produces

<table>
<thead>
<tr>
<th>Date</th>
<th>h.1</th>
<th>h.2</th>
<th>h.3</th>
<th>h.4</th>
<th>h.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009-12-28</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>2009-12-29</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>2009-12-30</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>2009-12-31</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>2010-01-04</td>
<td>0.739303</td>
<td>0.741100</td>
<td>0.744529</td>
<td>0.746940</td>
<td>0.752688</td>
</tr>
<tr>
<td>2010-01-05</td>
<td>0.695349</td>
<td>0.702488</td>
<td>0.706812</td>
<td>0.713342</td>
<td>0.721629</td>
</tr>
<tr>
<td>2010-01-06</td>
<td>0.649343</td>
<td>0.654048</td>
<td>0.664055</td>
<td>0.672742</td>
<td>0.681263</td>
</tr>
</tbody>
</table>

The output will always have as many rows as the data input. Values that are not forecast are nan filled.

1.3.6 Output Classes

```python
class arch.univariate.base.ARCHModelForecast(index, mean, variance, residual_variance, simulated_paths=None, simulated_variances=None, simulated_residual_variances=None, simulated_residuals=None, align='origin')
```

Container for forecasts from an ARCH Model

Parameters

- `index` ([list, ndarray])
- `mean` [ndarray]
- `variance` [ndarray]
- `residual_variance` [ndarray]
- `simulated_paths` [ndarray, optional]
- `simulated_variances` [ndarray, optional]
- `simulated_residual_variances` [ndarray, optional]
- `simulated_residuals` [ndarray, optional]
- `align` [‘origin’, ‘target’]

Attributes
mean [DataFrame] Forecast values for the conditional mean of the process

variance [DataFrame] Forecast values for the conditional variance of the process

residual_variance [DataFrame] Forecast values for the conditional variance of the residuals

class arch.univariate.base.ArchModelForecastSimulation (values, residuals, variances, residual_variances)

Container for a simulation or bootstrap-based forecasts from an ARCH Model

Parameters

values
residuals
variances
residual_variances

Attributes

values [DataFrame] Simulated values of the process
residuals [DataFrame] Simulated residuals used to produce the values
variances [DataFrame] Simulated variances of the values
residual_variances [DataFrame] Simulated variance of the residuals

1.4 Volatility Forecasting

This setup code is required to run in an IPython notebook

[1]:
import warnings
warnings.simplefilter('ignore')

%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns

sns.set_style('darkgrid')
plt.rc("figure", figsize=(16, 6))
plt.rc("savefig", dpi=90)
plt.rc("font", family="sans-serif")
plt.rc("font", size=14)

1.4.1 Data

These examples make use of S&P 500 data from Yahoo! that is available from arch.data.sp500.

[2]:
import datetime as dt
import sys

import numpy as np
import pandas as pd

from arch import arch_model
import arch.data.sp500

(continues on next page)
1.4.2 Basic Forecasting

Forecasts can be generated for standard GARCH(p,q) processes using any of the three forecast generation methods:

- Analytical
- Simulation-based
- Bootstrap-based

Be default forecasts will only be produced for the final observation in the sample so that they are out-of-sample.

Forecasts start with specifying the model and estimating parameters.

```python
[3]: am = arch_model(returns, vol='Garch', p=1, o=0, q=1, dist='Normal')
```

```python
res = am.fit(update_freq=5)
```

```
Iteration: 10, Func. Count: 72, Neg. LLF: 6936.718529994181
Optimization terminated successfully. (Exit mode 0)
Current function value: 6936.718476989043
Iterations: 11
Function evaluations: 79
Gradient evaluations: 11
```

```python
[4]: forecasts = res.forecast()
```

Forecasts are contained in an `ARCHModelForecast` object which has 4 attributes:

- `mean` - The forecast means
- `residual_variance` - The forecast residual variances, that is $E_t[\epsilon_{t+h}^2]$
- `variance` - The forecast variance of the process, $E_t[r_{t+h}^2]$. The variance will differ from the residual variance whenever the model has mean dynamics, e.g., in an AR process.
- `simulations` - An object that contains detailed information about the simulations used to generate forecasts. Only used if the forecast method is set to 'simulation' or 'bootstrap'. If using 'analytical' (the default), this is None.

The three main outputs are all returned in `DataFrames` with columns of the form `h.#` where # is the number of steps ahead. That is, `h.1` corresponds to one-step ahead forecasts while `h.10` corresponds to 10-steps ahead.

The default forecast only produces 1-step ahead forecasts.

```python
[5]: print(forecasts.mean.iloc[-3:])
print(forecasts.residual_variance.iloc[-3:])
print(forecasts.variance.iloc[-3:])
```

```
h.1
Date
2018-12-27 NaN
2018-12-28 NaN
2018-12-31 0.056353
```
Longer horizon forecasts can be computed by passing the parameter `horizon`.

```
[6]: forecasts = res.forecast(horizon=5)
pd.DataFrame(forecasts.residual_variance.iloc[-3:]).T
```

<table>
<thead>
<tr>
<th>Date</th>
<th>h.1</th>
<th>h.2</th>
<th>h.3</th>
<th>h.4</th>
<th>h.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2018-12-27</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>2018-12-28</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>2018-12-31</td>
<td>3.59647</td>
<td>3.568502</td>
<td>3.540887</td>
<td>3.513621</td>
<td>3.4867</td>
</tr>
</tbody>
</table>

Values that are not computed are `nan`-filled.

1.4.3 Alternative Forecast Generation Schemes

Fixed Window Forecasting

Fixed-windows forecasting uses data up to a specified date to generate all forecasts after that date. This can be implemented by passing the entire data in when initializing the model and then using `last_obs` when calling `fit`.

```
[7]: res = am.fit(last_obs='2011-1-1', update_freq=5)
forecasts = res.forecast(horizon=5)
pd.DataFrame(forecasts.variance.dropna().head())
```

<table>
<thead>
<tr>
<th>Date</th>
<th>h.1</th>
<th>h.2</th>
<th>h.3</th>
<th>h.4</th>
<th>h.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010-12-31</td>
<td>0.381757</td>
<td>0.390905</td>
<td>0.399988</td>
<td>0.409008</td>
<td>0.417964</td>
</tr>
<tr>
<td>2011-01-03</td>
<td>0.451724</td>
<td>0.460381</td>
<td>0.468976</td>
<td>0.477512</td>
<td>0.485987</td>
</tr>
<tr>
<td>2011-01-04</td>
<td>0.428416</td>
<td>0.437236</td>
<td>0.445994</td>
<td>0.454691</td>
<td>0.463326</td>
</tr>
<tr>
<td>2011-01-05</td>
<td>0.420554</td>
<td>0.429429</td>
<td>0.438242</td>
<td>0.446993</td>
<td>0.455683</td>
</tr>
<tr>
<td>2011-01-06</td>
<td>0.402483</td>
<td>0.411486</td>
<td>0.420425</td>
<td>0.429301</td>
<td>0.438115</td>
</tr>
</tbody>
</table>
Rolling Window Forecasting

Rolling window forecasts use a fixed sample length and then produce one-step from the final observation. These can be implemented using `first_obs` and `last_obs`.

```
[8]:
    index = returns.index
    start_loc = 0
    end_loc = np.where(index >= '2010-1-1')[0].min()
    forecasts = {}
    for i in range(20):
        sys.stdout.write('
')
        sys.stdout.flush()
        res = am.fit(first_obs=i, last_obs=i + end_loc, disp='off')
        temp = res.forecast(horizon=3).variance
        fcast = temp.iloc[i + end_loc - 1]
        forecasts[fcast.name] = fcast
    print()
    print(pd.DataFrame(forecasts).T)
```

<table>
<thead>
<tr>
<th></th>
<th>h.1</th>
<th>h.2</th>
<th>h.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>2009-12-31</td>
<td>0.615314</td>
<td>0.621743</td>
<td>0.628133</td>
</tr>
<tr>
<td>2010-01-04</td>
<td>0.751747</td>
<td>0.757343</td>
<td>0.762905</td>
</tr>
<tr>
<td>2010-01-05</td>
<td>0.710453</td>
<td>0.716315</td>
<td>0.722142</td>
</tr>
<tr>
<td>2010-01-06</td>
<td>0.666244</td>
<td>0.672346</td>
<td>0.678411</td>
</tr>
<tr>
<td>2010-01-07</td>
<td>0.634224</td>
<td>0.640706</td>
<td>0.646949</td>
</tr>
<tr>
<td>2010-01-08</td>
<td>0.600109</td>
<td>0.606695</td>
<td>0.613040</td>
</tr>
<tr>
<td>2010-01-11</td>
<td>0.565514</td>
<td>0.572212</td>
<td>0.578869</td>
</tr>
<tr>
<td>2010-01-12</td>
<td>0.599561</td>
<td>0.606051</td>
<td>0.612501</td>
</tr>
<tr>
<td>2010-01-13</td>
<td>0.608309</td>
<td>0.614748</td>
<td>0.621148</td>
</tr>
<tr>
<td>2010-01-14</td>
<td>0.575065</td>
<td>0.581756</td>
<td>0.588406</td>
</tr>
<tr>
<td>2010-01-15</td>
<td>0.629890</td>
<td>0.636245</td>
<td>0.642561</td>
</tr>
<tr>
<td>2010-01-19</td>
<td>0.695074</td>
<td>0.701042</td>
<td>0.706974</td>
</tr>
<tr>
<td>2010-01-20</td>
<td>0.737154</td>
<td>0.742908</td>
<td>0.748627</td>
</tr>
<tr>
<td>2010-01-21</td>
<td>0.954167</td>
<td>0.958725</td>
<td>0.963255</td>
</tr>
<tr>
<td>2010-01-22</td>
<td>1.253453</td>
<td>1.256401</td>
<td>1.259332</td>
</tr>
<tr>
<td>2010-01-25</td>
<td>1.178691</td>
<td>1.182043</td>
<td>1.185374</td>
</tr>
<tr>
<td>2010-01-26</td>
<td>1.112205</td>
<td>1.115886</td>
<td>1.119545</td>
</tr>
<tr>
<td>2010-01-27</td>
<td>1.051295</td>
<td>1.055327</td>
<td>1.059335</td>
</tr>
<tr>
<td>2010-01-28</td>
<td>1.085678</td>
<td>1.089512</td>
<td>1.093324</td>
</tr>
<tr>
<td>2010-01-29</td>
<td>1.085786</td>
<td>1.089593</td>
<td>1.093378</td>
</tr>
</tbody>
</table>

Recursive Forecast Generation

Recursive is similar to rolling except that the initial observation does not change. This can be easily implemented by dropping the `first_obs` input.

```
[9]:
    import numpy as np
    import pandas as pd

    index = returns.index
    start_loc = 0
    end_loc = np.where(index >= '2010-1-1')[0].min()
    forecasts = {}
    for i in range(20):
        sys.stdout.write('
')
        sys.stdout.flush()
```

(continues on next page)
res = am.fit(last_obs=i + end_loc, disp='off')
temp = res.forecast(horizon=3).variance
fcast = temp.iloc[i + end_loc - 1]
forecasts[fcast.name] = fcast
print()
print(pd.DataFrame(forecasts).T)

... h.1 h.2 h.3
2009-12-31 0.615314 0.621743 0.628133
2010-01-04 0.751723 0.757321 0.762885
2010-01-05 0.709956 0.715791 0.721591
2010-01-06 0.666057 0.672146 0.678197
2010-01-07 0.634503 0.640776 0.647011
2010-01-08 0.600417 0.606893 0.613329
2010-01-11 0.565684 0.572369 0.579014
2010-01-12 0.599963 0.606438 0.612874
2010-01-13 0.608558 0.614982 0.621366
2010-01-14 0.575020 0.581639 0.588217
2010-01-15 0.629696 0.635989 0.642244
2010-01-19 0.694735 0.700656 0.706541
2010-01-20 0.736509 0.742193 0.747842
2010-01-21 0.952751 0.957245 0.961713
2010-01-22 1.251145 1.254050 1.256936
2010-01-25 1.176864 1.180162 1.183441
2010-01-26 1.110848 1.114497 1.118124
2010-01-27 1.050102 1.054077 1.058028
2010-01-28 1.084669 1.088454 1.092216
2010-01-29 1.085003 1.088783 1.092541

1.4.4 TARCH

Analytical Forecasts

All ARCH-type models have one-step analytical forecasts. Longer horizons only have closed forms for specific models. TARCH models do not have closed-form (analytical) forecasts for horizons larger than 1, and so simulation or bootstrapping is required. Attempting to produce forecasts for horizons larger than 1 using method='analytical' results in a ValueError.

```python
# TARCH specification
am = arch_model(returns, vol='GARCH', power=2.0, p=1, o=1, q=1)
res = am.fit(update_freq=5)
forecasts = res.forecast()
print(forecasts.variance.iloc[-1])
```

Iteration: 5, Func. Count: 44, Neg. LLF: 6827.9664141215
Iteration: 10, Func. Count: 84, Neg. LLF: 6822.882835206155
Optimization terminated successfully. (Exit mode 0)
Current function value: 6822.882835206155
Iterations: 13
Function evaluations: 106
Gradient evaluations: 13

Name: 2018-12-31 00:00:00, dtype: float64
Simulation Forecasts

When using simulation- or bootstrap-based forecasts, an additional attribute of an `ARCHModelForecast` object is meaningful – simulation.

```python
import matplotlib.pyplot as plt
fig, ax = plt.subplots(1, 1)
var_2016 = res.conditional_volatility['2016']**2.0
subplot = var_2016.plot(ax=ax, title='Conditional Variance')
subplot.set_xlim(var_2016.index[0], var_2016.index[-1])
```

```python
(735967.0, 736328.0)
```

![Conditional Variance](image)

```python
forecasts = res.forecast(horizon=5, method='simulation')
sims = forecasts.simulations
x = np.arange(1, 6)
lines = plt.plot(x, sims.residual_variances[-1, ::5].T, color='#9cb2d6', alpha=0.5)
lines[0].set_label('Simulated path')
line = plt.plot(x, forecasts.variance.iloc[-1].values, color='#002868')
line[0].set_label('Expected variance')
plt.gca().set_xticks(x)
plt.gca().set_xlim(1, 5)
legend = plt.legend()
```
Bootstrap Forecasts

Bootstrap-based forecasts are nearly identical to simulation-based forecasts except that the values used to simulate the process are computed from historical data rather than using the assumed distribution of the residuals. Forecasts produced using this method also return an `ARCHModelForecastSimulation` containing information about the simulated paths.

```
[14]: forecasts = res.forecast(horizon=5, method='bootstrap')
sims = forecasts.simulations

lines = plt.plot(x, sims.residual_variances[-1, ::5].T, color='#9cb2d6', alpha=0.5)
lines[0].set_label('Simulated path')
line = plt.plot(x, forecasts.variance.iloc[-1].values, color='#002868')
line[0].set_label('Expected variance')
plt.gca().set_xticks(x)
```

(continues on next page)
1.5 Value-at-Risk Forecasting

Value-at-Risk (VaR) forecasts from GARCH models depend on the conditional mean, the conditional volatility and the quantile of the standardized residuals,

$$\text{VaR}_{t+1|t} = -\mu_{t+1|t} - \sigma_{t+1|t} q_\alpha$$

where q_α is the α quantile of the standardized residuals, e.g., 5%.

The quantile can be either computed from the estimated model density or computed using the empirical distribution of the standardized residuals. The example below shows both methods.

```python
[15]: am = arch_model(returns, vol='Garch', p=1, o=0, q=1, dist='skewt')
res = am.fit(disp='off', last_obs='2017-12-31')
```

1.5.1 Parametric VaR

First, we use the model to estimate the VaR. The quantiles can be computed using the `ppf` method of the distribution attached to the model. The quantiles are printed below.

```python
[16]: forecasts = res.forecast(start='2018-1-1')
cond_mean = forecasts.mean['2018:1']
cond_var = forecasts.variance['2018:1']
q = am.distribution.ppf([0.01, 0.05], res.params[-2:])
print(q)
[-2.64485046 -1.64965888]
```

Next, we plot the two VaRs along with the returns. The returns that violate the VaR forecasts are highlighted.

```python
[17]: value_at_risk = -cond_mean.values - np.sqrt(cond_var).values * q[None, :]
value_at_risk = pd.DataFrame(
    value_at_risk, columns=['1%', '5%'], index=cond_var.index)
```
ax = value_at_risk.plot(legend=False)
xl = ax.set_xlim(value_at_risk.index[0], value_at_risk.index[-1])
rets_2018 = returns['2018'].copy()
rets_2018.name = 'S&P 500 Return'
c = []
for idx in value_at_risk.index:
 if rets_2018[idx] > -value_at_risk.loc[idx, '5%']:
 c.append('#000000')
 elif rets_2018[idx] < -value_at_risk.loc[idx, '1%']:
 c.append('#BB0000')
 else:
 c.append('#BB00BB')
c = np.array(c, dtype='object')
labels = {
 '#BB0000': '1% Exceedence',
 '#BB00BB': '5% Exceedence',
 '#000000': 'No Exceedence',
}
markers = {'#BB0000': 'x', '#BB00BB': 's', '#000000': 'o'}
for color in np.unique(c):
 sel = c == color
 ax.scatter(rets_2018.index[sel], -rets_2018.loc[sel], marker=markers[color], c=c[sel], label=labels[color])
ax.set_title('Parametric VaR')
leg = ax.legend(frameon=False, ncol=3)

1.5.2 Filtered Historical Simulation

Next, we use the empirical distribution of the standardized residuals to estimate the quantiles. These values are very similar to those estimated using the assumed distribution. The plot below is identical except for the slightly different quantiles.
```python
std_rets = (returns['2017'] - res.params['mu']) / res.conditional_volatility
std_rets = std_rets.dropna()
q = std_rets.quantile([.01, .05])
print(q)
```

```
0.01  -2.668272
0.05   -1.723352
dtype: float64
```

```python
value_at_risk = -cond_mean.values - np.sqrt(cond_var).values * q.values[None, :]
value_at_risk = pd.DataFrame(
    value_at_risk, columns=['1%', '5%'], index=cond_var.index)
ax = value_at_risk.plot(legend=False)
xl = ax.set_xlim(value_at_risk.index[0], value_at_risk.index[-1])
rets_2018 = returns['2018'].copy()
rets_2018.name = 'S&P 500 Return'
c = []
for idx in value_at_risk.index:
    if rets_2018[idx] > -value_at_risk.loc[idx, '5%']:
        c.append('#000000')
    elif rets_2018[idx] < -value_at_risk.loc[idx, '1%']:
        c.append('#BB0000')
    else:
        c.append('#BB00BB')
c = np.array(c, dtype='object')
for color in np.unique(c):
    sel = c == color
    ax.scatter(rets_2018.index[sel], -rets_2018.loc[sel], marker=markers[color], c=c[sel], label=labels[color])
ax.set_title('Filtered Historical Simulation VaR')
leg = ax.legend(frameon=False, ncol=3)
```

1.5. Value-at-Risk Forecasting
1.6 Volatility Scenarios

Custom random-number generators can be used to implement scenarios where shocks follow a particular pattern. For example, suppose you wanted to find out what would happen if there were 5 days of shocks that were larger than average. In most circumstances, the shocks in a GARCH model have unit variance. This could be changed so that the first 5 shocks have variance 4, or twice the standard deviation.

Another scenario would be to oversample a specific period for the shocks. When using the standard bootstrap method (filtered historical simulation) the shocks are drawn using iid sampling from the history. While this approach is standard and well-grounded, it might be desirable to sample from a specific period. This can be implemented using a custom random number generator. This strategy is precisely how the filtered historical simulation is implemented internally, only where the draws are uniformly sampled from the entire history.

First, some preliminaries

```
[1]: %matplotlib inline
    import matplotlib.pyplot as plt
    import numpy as np
    import pandas as pd
    import seaborn as sns

    from arch.univariate import GARCH, ConstantMean, Normal

    %matplotlib inline
    import matplotlib.pyplot as plt

    sns.set_style('darkgrid')
    plt.rc("figure", figsize=(16, 6))
    plt.rc("savefig", dpi=90)
    plt.rc("font", family="sans-serif")
    plt.rc("font", size=14)
```

This example makes use of returns from the NASDAQ index. The scenario bootstrap will make use of returns in the run-up to and during the Financial Crisis of 2008.

```
[2]: import arch.data.nasdaq

data = arch.data.nasdaq.load()
nasdaq = data['Adj Close']
print(nasdaq.head())
```

<table>
<thead>
<tr>
<th>Date</th>
<th>Adj Close</th>
</tr>
</thead>
<tbody>
<tr>
<td>1999-01-04</td>
<td>2208.050049</td>
</tr>
<tr>
<td>1999-01-05</td>
<td>2251.270020</td>
</tr>
<tr>
<td>1999-01-06</td>
<td>2320.860107</td>
</tr>
<tr>
<td>1999-01-07</td>
<td>2326.090088</td>
</tr>
<tr>
<td>1999-01-08</td>
<td>2344.409912</td>
</tr>
</tbody>
</table>

Next, the returns are computed and the model is constructed. The model is constructed from the building blocks. It is a standard model and could have been (almost) equivalently constructed using

```
mod = arch_model(rets, mean='constant', p=1, o=1, q=1)
```

The one advantage of constructing the model using the components is that the NumPy RandomState that is used to simulate from the model can be externally set. This allows the generator seed to be easily set and for the state to reset, if needed.
NOTE: It is always a good idea to scale return by 100 before estimating ARCH-type models. This helps the optimizer
converse since the scale of the volatility intercept is much closer to the scale of the other parameters in the model.

```python
[3]: rets = 100 * nasdaq.pct_change().dropna()
# Build components to set the state for the distribution
random_state = np.random.RandomState(1)
dist = Normal(random_state=random_state)
volatility = GARCH(1, 1, 1)
mod = ConstantMean(rets, volatility=volatility, distribution=dist)
```

Fitting the model is standard.

```python
[4]: res = mod.fit(disp='off')
res
```

GJR-GARCH models support analytical forecasts, which is the default. The forecasts are produced for all of 2017
using the estimated model parameters.

```python
[5]: forecasts = res.forecast(start='1-1-2017', horizon=10)
print(forecasts.residual_variance.dropna().head())
```

(continues on next page)
All GARCH specification are complete models in the sense that they specify a distribution. This allows simulations to be produced using the assumptions in the model. The `forecast` function can be made to produce simulations using the assumed distribution by setting `method='simulation'`.

These forecasts are similar to the analytical forecasts above. As the number of simulation increases towards ∞, the simulation-based forecasts will converge to the analytical values above.

```
[6]: sim_forecasts = res.forecast(start='1-1-2017', method='simulation', horizon=10)
print(sim_forecasts.residual_variance.dropna().head())
```

```
          h.01    h.02    h.03    h.04    h.05    h.06
Date
2017-01-03  0.623295  0.637251  0.647817  0.663746  0.673404  0.687952
2017-01-04  0.599455  0.617539  0.635838  0.649695  0.659733  0.667267
2017-01-05  0.567297  0.583415  0.597571  0.613065  0.621790  0.636180
2017-01-06  0.542506  0.555688  0.570280  0.585426  0.595551  0.608487
2017-01-09  0.515452  0.528771  0.542658  0.559684  0.580434  0.594855
```

1.6.1 Custom Random Generators

`forecast` supports replacing the generator based on the assumed distribution of residuals in the model with any other generator. A shock generator should usually produce unit variance shocks. However, in this example the first 5 shocks generated have variance 2, and the remainder are standard normal. This scenario consists of a period of consistently surprising volatility where the volatility has shifted for some reason.

The forecast variances are much larger and grow faster than those from either method previously illustrated. This reflects the increase in volatility in the first 5 days.

```
[7]: import numpy as np
random_state = np.random.RandomState(1)

def scenario_rng(size):
    shocks = random_state.standard_normal(size)
    shocks[:, :5] *= np.sqrt(2)
    return shocks

scenario_forecasts = res.forecast(
```
1.6.2 Bootstrap Scenarios

Forecast supports Filtered Historical Simulation (FHS) using method='bootstrap'. This is effectively a simulation method where the simulated shocks are generated using iid sampling from the history of the demeaned and standardized return data. Custom bootstraps are another application of rng. Here an object is used to hold the shocks. This object exposes a method (rng) the acts like a random number generator, except that it only returns values that were provided in the shocks parameter.

The internal implementation of the FHS uses a method almost identical to this where shocks contain the entire history.

```python
class ScenarioBootstrapRNG(object):
    def __init__(self, shocks, random_state):
        self._shocks = np.asarray(shocks)  # 1d
        self._rs = random_state
        self.n = shocks.shape[0]

    def rng(self, size):
        idx = self._rs.randint(0, self.n, size=size)
        return self._shocks[idx]
```

random_state = np.random.RandomState(1)
std_shocks = res.resid / res.conditional_volatility
shocks = std_shocks['2008-08-01': '2008-11-10']
scenario_bootstrap = ScenarioBootstrapRNG(shocks, random_state)
bs_forecasts = res.forecast(
 start='1-1-2017',
 method='simulation',
 horizon=10,
 rng=scenario_bootstrap.rng)
print(bs_forecasts.residual_variance.dropna().head())

```

<table>
<thead>
<tr>
<th>Date</th>
<th>h.01</th>
<th>h.02</th>
<th>h.03</th>
<th>h.04</th>
<th>h.05</th>
<th>h.06</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017-01-03</td>
<td>0.623295</td>
<td>0.685911</td>
<td>0.745202</td>
<td>0.821112</td>
<td>0.886289</td>
<td>0.966737</td>
</tr>
<tr>
<td>2017-01-04</td>
<td>0.681813</td>
<td>0.743119</td>
<td>0.811486</td>
<td>0.877539</td>
<td>0.936587</td>
<td></td>
</tr>
<tr>
<td>2017-01-05</td>
<td>0.691225</td>
<td>0.758891</td>
<td>0.816663</td>
<td>0.893986</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017-01-06</td>
<td>0.596301</td>
<td>0.656603</td>
<td>0.721505</td>
<td>0.778286</td>
<td>0.849680</td>
<td></td>
</tr>
<tr>
<td>2017-01-09</td>
<td>0.567086</td>
<td>0.622224</td>
<td>0.689831</td>
<td>0.775048</td>
<td>0.845656</td>
<td></td>
</tr>
<tr>
<td>2017-01-03</td>
<td>0.970796</td>
<td>0.977504</td>
<td>0.982202</td>
<td>0.992547</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017-01-04</td>
<td>0.965540</td>
<td>0.966432</td>
<td>0.974248</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017-01-05</td>
<td>0.915208</td>
<td>0.930777</td>
<td>0.938636</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017-01-06</td>
<td>0.873866</td>
<td>0.886221</td>
<td>0.890002</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017-01-09</td>
<td>0.864591</td>
<td>0.874696</td>
<td>0.894397</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

(continues on next page)
1.6.3 Visualizing the differences

The final forecast values are used to illustrate how these are different. The analytical and standard simulation are virtually identical. The simulated scenario grows rapidly for the first 5 periods and then more slowly. The bootstrap scenario grows quickly and consistently due to the magnitude of the shocks in the financial crisis.

```
import pandas as pd
df = pd.concat([
    forecasts.residual_variance.iloc[-1],
    sim_forecasts.residual_variance.iloc[-1],
    scenario_forecasts.residual_variance.iloc[-1],
    bs_forecasts.residual_variance.iloc[-1]
], 1)
df.columns = ['Analytic', 'Simulation', 'Scenario Sim', 'Bootstrap Scenario']
# Plot annualized vol
subplot = np.sqrt(252 * df).plot(legend=False)
legend = subplot.legend(frameon=False)
```

1.6.4 Comparing the paths

The paths are available on the attribute `simulations`. Plotting the paths shows important differences between the two scenarios beyond the average differences plotted above. Both start at the same point.
1.6.5 Comparing across the year

A hedgehog plot is useful for showing the differences between the two forecasting methods across the year, instead of a single day.

```python
fig, axes = plt.subplots(1, 2)
colors = sns.color_palette('dark')
# The paths for the final observation
sim_paths = sim_forecasts.simulations.residual_variances[-1].T
bs_paths = bs_forecasts.simulations.residual_variances[-1].T
x = np.arange(1, 11)
# Plot the paths and the mean, set the axis to have the same limit
axes[0].plot(x, np.sqrt(252 * sim_paths), color=colors[1], alpha=0.05)
axes[0].plot(x, np.sqrt(252 * sim_forecasts.residual_variance.iloc[-1]),
            color='k',
            alpha=1)
axes[0].set_title('Model-based Simulation')
axes[0].set_xticks(np.arange(1, 11))
axes[0].set_xlim(1, 10)
axes[0].set_ylim(20, 100)
axes[1].plot(x, np.sqrt(252 * bs_paths), color=colors[2], alpha=0.05)
axes[1].plot(x, np.sqrt(252 * bs_forecasts.residual_variance.iloc[-1]),
            color='k',
            alpha=1)
axes[1].set_xticks(np.arange(1, 11))
axes[1].set_xlim(1, 10)
axes[1].set_ylim(20, 100)
title = axes[1].set_title('Bootstrap Scenario')
```

1.6. Volatility Scenarios 37
vol = res.conditional_volatility['2017-1-1':'2019-1-1']
idx = vol.index
ax.plot(np.sqrt(252) * vol, alpha=0.5)
colors = sns.color_palette()
for i in range(0, len(vol), 22):
a = analytic.iloc[i]
b = bs.iloc[i]
loc = idx.get_loc(a.name)
new_idx = idx[loc + 1:loc + 11]
a.index = new_idx
b.index = new_idx
ax.plot(np.sqrt(252) * a, color=colors[1])
ax.plot(np.sqrt(252) * b, color=colors[2])
labels = ['Annualized Vol.', 'Analytic Forecast', 'Bootstrap Scenario Forecast']
legend = ax.legend(labels, frameon=False)
xlim = ax.set_xlim(vol.index[0], vol.index[-1])

1.7 Mean Models

All ARCH models start by specifying a mean model.

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ZeroMean([y, hold_back, volatility, …])</td>
<td>Model with zero conditional mean estimation and simulation</td>
</tr>
<tr>
<td>ConstantMean([y, hold_back, volatility, …])</td>
<td>Constant mean model estimation and simulation.</td>
</tr>
<tr>
<td>ARX([y, x, lags, constant, hold_back, …])</td>
<td>Autoregressive model with optional exogenous regressors estimation and simulation</td>
</tr>
<tr>
<td>HARX([y, x, lags, constant, use_rotated, …])</td>
<td>Heterogeneous Autoregression (HAR), with optional exogenous regressors, model estimation and simulation</td>
</tr>
<tr>
<td>LS([y, x, constant, hold_back, volatility, …])</td>
<td>Least squares model estimation and simulation</td>
</tr>
</tbody>
</table>
1.7.1 arch.univariate.ZeroMean

class arch.univariate.ZeroMean(y=None, hold_back=None, volatility=None, distribution=None, rescale=None):

Model with zero conditional mean estimation and simulation

Parameters

y [[ndarray, Series]] nobs element vector containing the dependent variable
hold_back [int] Number of observations at the start of the sample to exclude when estimating model parameters. Used when comparing models with different lag lengths to estimate on the common sample.
volatility [VolatilityProcess, optional] Volatility process to use in the model
distribution [Distribution, optional] Error distribution to use in the model
rescale [bool, optional] Flag indicating whether to automatically rescale data if the scale of the data is likely to produce convergence issues when estimating model parameters. If False, the model is estimated on the data without transformation. If True, than y is rescaled and the new scale is reported in the estimation results.

Notes

The zero mean model is described by

\[y_t = \epsilon_t \]

Examples

```python
>>> import numpy as np
>>> from arch.univariate import ZeroMean
>>> y = np.random.randn(100)
>>> zm = ZeroMean(y)
>>> res = zm.fit()
```

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bounds(self)</td>
<td>Construct bounds for parameters to use in non-linear optimization</td>
</tr>
<tr>
<td>compute_param_cov(self, params, backcast, ...)</td>
<td>Computes parameter covariances using numerical derivatives.</td>
</tr>
<tr>
<td>constraints(self)</td>
<td>Construct linear constraint arrays for use in non-linear optimization</td>
</tr>
<tr>
<td>fit(self, update_freq, disp, ...)</td>
<td>Fits the model given a nobs by 1 vector of sigma2 values</td>
</tr>
<tr>
<td>fix(self, params, numpy.ndarray, ...)</td>
<td>Allows an ARCHModelFixedResult to be constructed from fixed parameters.</td>
</tr>
<tr>
<td>forecast(self, params, ...)</td>
<td>Construct forecasts from estimated model</td>
</tr>
<tr>
<td>parameter_names(self)</td>
<td>List of parameters names</td>
</tr>
<tr>
<td>resid(self, params, y, ...)</td>
<td>Compute model residuals</td>
</tr>
<tr>
<td>simulate(self, params, numpy.ndarray, ...)</td>
<td>Simulated data from a zero mean model</td>
</tr>
</tbody>
</table>
Table 2 – continued from previous page

starting_values

(self) Returns starting values for the mean model, often the same as the values returned from fit

arch.univariate.ZeroMean.bounds

ZeroMean.getBounds(self) \rightarrow \text{List}[\text{Tuple}[\text{float}, \text{float}]]

Construct bounds for parameters to use in non-linear optimization

Returns

bounds [list (2-tuple of float)] Bounds for parameters to use in estimation.

Return type List[Tuple[float, float]]

arch.univariate.ZeroMean.compute_param_cov

ZeroMean.compute_param_cov(self, params: numpy.ndarray, backcast: \text{Union}[\text{float}, \text{NoneType}] = None, robust: \text{bool} = True) \rightarrow \text{numpy.ndarray}

Computes parameter covariances using numerical derivatives.

Parameters

params [ndarray] Model parameters

backcast [float] Value to use for pre-sample observations

robust [bool, optional] Flag indicating whether to use robust standard errors (True) or classic MLE (False)

Return type ndarray

arch.univariate.ZeroMean.constraints

ZeroMean.constraints(self) \rightarrow \text{Tuple}[\text{nump.ndarray}, \text{nump.ndarray}]

Construct linear constraint arrays for use in non-linear optimization

Returns

a [ndarray] Number of constraints by number of parameters loading array

b [ndarray] Number of constraints array of lower bounds

Notes

Parameters satisfy $a \cdot \text{parameters} - b \geq 0$

Return type Tuple[ndarray, ndarray]
arch.univariate.ZeroMean.fit

Fits the model given a nobs by 1 vector of sigma2 values

Parameters

- **update_freq** [int, optional] Frequency of iteration updates. Output is generated every update_freq iterations. Set to 0 to disable iterative output.
- **disp** [str] Either ‘final’ to print optimization result or ‘off’ to display nothing
- **starting_values** [ndarray, optional] Array of starting values to use. If not provided, starting values are constructed by the model components.
- **cov_type** [str, optional] Estimation method of parameter covariance. Supported options are ‘robust’, which does not assume the Information Matrix Equality holds and ‘classic’ which does. In the ARCH literature, ‘robust’ corresponds to Bollerslev-Wooldridge covariance estimator.
- **show_warning** [bool, optional] Flag indicating whether convergence warnings should be shown.
- **first_obs** [[int, str, datetime, Timestamp]] First observation to use when estimating model
- **last_obs** [[int, str, datetime, Timestamp]] Last observation to use when estimating model
- **tol** [float, optional] Tolerance for termination.
- **options** [dict, optional] Options to pass to scipy.optimize.minimize. Valid entries include ‘ftol’, ‘eps’, ‘disp’, and ‘maxiter’.
- **backcast** [float, optional] Value to use as backcast. Should be measure σ^2_0 since model-specific non-linear transformations are applied to value before computing the variance recursions.

Returns

- **results** [ARCHModelResult] Object containing model results

Notes

A ConvergenceWarning is raised if SciPy’s optimizer indicates difficulty finding the optimum.

Parameters are optimized using SLSQP.

Return type ARCHModelResult

Allows an ARCHModelFixedResult to be constructed from fixed parameters.

Parameters

params [[ndarray, Series]] User specified parameters to use when generating the result. Must have the correct number of parameters for a given choice of mean model, volatility model and distribution.

first_obs [[int, str, datetime, Timestamp]] First observation to use when fixing model

last_obs [[int, str, datetime, Timestamp]] Last observation to use when fixing model

Returns

results [ARCHModelFixedResult] Object containing model results

Notes

Parameters are not checked against model-specific constraints.

Return type ARCHModelFixedResult

ZeroMean.forecast

ZeroMean.forecast(self, params: Union[numpy.ndarray, pandas.core.series.Series], horizon: int = 1, start: Union[int, str, datetime.datetime, numpy.datetime64, pandas._libs.tslibs.timestamps.Timestamp, NoneType] = None, align: str = 'origin', method: str = 'analytic', simulations: int = 1000, rng: Union[Callable[[Union[int, Tuple[int, ...]]], numpy.ndarray], NoneType] = None, random_state: Union[numpy.random.mtrand.RandomState, NoneType] = None) → arch.univariate.base.ARCHModelForecast

Construct forecasts from estimated model

Parameters

params [[ndarray, Series], optional] Alternative parameters to use. If not provided, the parameters estimated when fitting the model are used. Must be identical in shape to the parameters computed by fitting the model.

horizon [int, optional] Number of steps to forecast

start [[int, datetime, Timestamp, str], optional] An integer, datetime or str indicating the first observation to produce the forecast for. Datetimes can only be used with pandas inputs that have a datetime index. Strings must be convertible to a date time, such as in ‘1945-01-01’.

align [str, optional] Either ‘origin’ or ‘target’. When set to ‘origin’, the t-th row of forecasts contains the forecasts for t+1, t+2, ..., t+h. When set to ‘target’, the t-th row contains the 1-step ahead forecast from time t-1, the 2 step from time t-2, ..., and the h-step from time t-h. ‘target’ simplified computing forecast errors since the realization and h-step forecast are aligned.
method [‘analytic’, ‘simulation’, ‘bootstrap’] Method to use when producing the forecast. The default is analytic. The method only affects the variance forecast generation. Not all volatility models support all methods. In particular, volatility models that do not evolve in squares such as EGARCH or TARCH do not support the ‘analytic’ method for horizons > 1.

simulations [int] Number of simulations to run when computing the forecast using either simulation or bootstrap.

rng [callable, optional] Custom random number generator to use in simulation-based forecasts. Must produce random samples using the syntax rng(size) where size the 2-element tuple (simulations, horizon).

random_state [RandomState, optional] NumPy RandomState instance to use when method is ‘bootstrap’

Returns

forecasts [ARCHModelForecast] t by h data frame containing the forecasts. The alignment of the forecasts is controlled by align.

Notes

The most basic 1-step ahead forecast will return a vector with the same length as the original data, where the t-th value will be the time-t forecast for time t + 1. When the horizon is > 1, and when using the default value for align, the forecast value in position [t, h] is the time-t, h+1 step ahead forecast. If model contains exogenous variables (model.x is not None), then only 1-step ahead forecasts are available. Using horizon > 1 will produce a warning and all columns, except the first, will be nan-filled.

If align is ‘origin’, forecast[t,h] contains the forecast made using y[:t] (that is, up to but not including t) for horizon h + 1. For example, y[100,2] contains the 3-step ahead forecast using the first 100 data points, which will correspond to the realization y[100 + 2]. If align is ‘target’, then the same forecast is in location [102, 2], so that it is aligned with the observation to use when evaluating, but still in the same column.

Examples

```python
>>> import pandas as pd
>>> from arch import arch_model
>>> am = arch_model(0.1,0.4,0.3,0.2,1.0), 250
>>> sim_data = am.simulate([0.1,0.4,0.3,0.2,1.0], 250)
>>> sim_data.index = pd.date_range('2000-01-01',periods=250)
>>> am = arch_model(sim_data['data'],mean='HAR',lags=[1,5,22], vol='Constant')
>>> res = am.fit()
>>> fig = res.hedgehog_plot()
```

Return type ARCHModelForecast

arch.univariate.ZeroMean.parameter_names

ZeroMean.parameter_names(self) → List[str]

List of parameters names

Returns
names [list (str)] List of variable names for the mean model

Return type List[str]

arch.univariate.ZeroMean.resids

Compute model residuals

Parameters

params [ndarray] Model parameters
y [ndarray, optional] Alternative values to use when computing model residuals
regressors [ndarray, optional] Alternative regressor values to use when computing model residuals

Returns

resids [ndarray] Model residuals

Return type Union[ndarray, DataFrame, Series]

arch.univariate.ZeroMean.simulate

ZeroMean.simulate(self, params: Union[Sequence[float], numpy.ndarray, pandas.core.series.Series], nobs: int, burn: int = 500, initial_value: Union[float, numpy.ndarray, NoneType] = None, x: Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series, NoneType] = None, initial_value_vol: Union[float, numpy.ndarray, NoneType] = None) → pandas.core.frame.DataFrame

Simulated data from a zero mean model

Parameters

params {[ndarray, DataFrame]} Parameters to use when simulating the model. Parameter order is [volatility distribution]. There are no mean parameters.
nobs [int] Length of series to simulate
burn [int, optional] Number of values to simulate to initialize the model and remove dependence on initial values.
initial_value [None] This value is not used.
x [None] This value is not used.
initial_value_vol {[ndarray, float], optional} An array or scalar to use when initializing the volatility process.

Returns

simulated_data [DataFrame] DataFrame with columns data containing the simulated values, volatility, containing the conditional volatility and errors containing the errors used in the simulation
Examples

Basic data simulation with no mean and constant volatility

```python
>>> from arch.univariate import ZeroMean
>>> import numpy as np

>>> zm = ZeroMean()
>>> params = np.array([1.0])
>>> sim_data = zm.simulate(params, 1000)
```

Simulating data with a non-trivial volatility process

```python
>>> from arch.univariate import GARCH

>>> zm.volatility = GARCH(p=1, o=1, q=1)
>>> sim_data = zm.simulate([0.05, 0.1, 0.1, 0.8], 300)
```

Return type: DataFrame

```
arch.univariate.ZeroMean.starting_values
```

ZeroMean.starting_values(self) → numpy.ndarray

Returns starting values for the mean model, often the same as the values returned from fit

Returns

sv [ndarray] Starting values

Return type: ndarray

Properties

```
distribution

name

num_params

volatility

x

y
```

Returns the number of parameters

Set or gets the error distribution

THe name of the model.

Set or gets the volatility process

Gets the value of the exogenous regressors in the model

Returns the dependent variable

```
arch.univariate.ZeroMean.distribution
```

ZeroMean.distribution

Set or gets the error distribution

Distributions must be a subclass of Distribution

Return type: Distribution

```
arch.univariate.ZeroMean.name
```

ZeroMean.name

THe name of the model.

Return type: str

arch.univariate.ZeroMean.num_params

ZeroMean.num_params
Returns the number of parameters

arch.univariate.ZeroMean.volatility

ZeroMean.volatility
Set or gets the volatility process
Volatility processes must be a subclass of VolatilityProcess

Return type VolatilityProcess

arch.univariate.ZeroMean.x

ZeroMean.x
Gets the value of the exogenous regressors in the model

Return type Union[ndarray, DataFrame, Series]

arch.univariate.ZeroMean.y

ZeroMean.y
Returs the dependent variable

Return type Union[ndarray, DataFrame, Series, None]

1.7.2 arch.univariate.ConstantMean

class arch.univariate.ConstantMean(y=None, hold_back=None, volatility=None, distribution=None, rescale=None)
Constant mean model estimation and simulation.

Parameters

y [ndarray, Series] nobs element vector containing the dependent variable

hold_back [int] Number of observations at the start of the sample to exclude when estimating model parameters. Used when comparing models with different lag lengths to estimate on the common sample.

volatility [VolatilityProcess, optional] Volatility process to use in the model

distribution [Distribution, optional] Error distribution to use in the model

rescale [bool, optional] Flag indicating whether to automatically rescale data if the scale of the data is likely to produce convergence issues when estimating model parameters. If False, the model is estimated on the data without transformation. If True, than y is rescaled and the new scale is reported in the estimation results.

Notes

The constant mean model is described by

\[y_t = \mu + \epsilon_t \]
Examples

```python
>>> import numpy as np
>>> from arch.univariate import ConstantMean
>>> y = np.random.randn(100)
>>> cm = ConstantMean(y)
>>> res = cm.fit()
```

Methods

- `bounds(self)`: Construct bounds for parameters to use in non-linear optimization.
- `compute_param_cov(self, params, backcast, ...)`: Computes parameter covariances using numerical derivatives.
- `constraints(self)`: Construct linear constraint arrays for use in non-linear optimization.
- `fit(self, update_freq, disp, ...)`: Fits the model given a nobs by 1 vector of sigma2 values.
- `fix(self, params, numpy.ndarray, ...)`: Allows an ARCHModelFixedResult to be constructed from fixed parameters.
- `forecast(self, params, ...)`: Construct forecasts from estimated model.
- `parameter_names(self)`: List of parameters names.
- `resids(self, params, y, ...)`: Compute model residuals.
- `simulate(self, params, ...)`: Simulated data from a constant mean model.
- `starting_values(self)`: Returns starting values for the mean model, often the same as the values returned from fit.

arch.univariate.ConstantMean.bounds

`ConstantMean.bounds(self) -> List[Tuple[float, float]]`

Construct bounds for parameters to use in non-linear optimization.

Returns

- `bounds` [list (2-tuple of float)] Bounds for parameters to use in estimation.

Return type List[Tuple[float, float]]

arch.univariate.ConstantMean.compute_param_cov

`ConstantMean.compute_param_cov(self, params: numpy.ndarray, backcast: Union[float, None-Type] = None, robust: bool = True) -> numpy.ndarray`

Computes parameter covariances using numerical derivatives.

Parameters

- `params` [ndarray] Model parameters
- `backcast` [float] Value to use for pre-sample observations
- `robust` [bool, optional] Flag indicating whether to use robust standard errors (True) or classic MLE (False)

Return type ndarray

1.7. Mean Models
arch.univariate.ConstantMean.constraints

```
ConstantMean. constraints(self) → Tuple[numpy.ndarray, numpy.ndarray]

Construct linear constraint arrays for use in non-linear optimization

Returns

a [ndarray] Number of constraints by number of parameters loading array

b [ndarray] Number of constraints array of lower bounds

Notes

Parameters satisfy a.dot(parameters) - b >= 0

Return type Tuple[ndarray, ndarray]
```

arch.univariate.ConstantMean.fit

```

Fits the model given a nobs by 1 vector of sigma2 values

Parameters

update_freq [int, optional] Frequency of iteration updates. Output is generated every update_freq iterations. Set to 0 to disable iterative output.

disp [str] Either ‘final’ to print optimization result or ‘off’ to display nothing

starting_values [ndarray, optional] Array of starting values to use. If not provided, starting values are constructed by the model components.

cov_type [str, optional] Estimation method of parameter covariance. Supported options are ‘robust’, which does not assume the Information Matrix Equality holds and ‘classic’ which does. In the ARCH literature, ‘robust’ corresponds to Bollerslev-Wooldridge covariance estimator.

show_warning [bool, optional] Flag indicating whether convergence warnings should be shown.

first_obs [[int, str, datetime, Timestamp]] First observation to use when estimating model

last_obs [[int, str, datetime, Timestamp]] Last observation to use when estimating model

tol [float, optional] Tolerance for termination.


backcast [float, optional] Value to use as backcast. Should be measure $\sigma_0^2$ since model-specific non-linear transformations are applied to value before computing the variance recursions.

Returns
results  [ARCHModelResult] Object containing model results

Notes

A ConvergenceWarning is raised if SciPy’s optimizer indicates difficulty finding the optimum.

Parameters are optimized using SLSQP.

Return type  ARCHModelResult

arch.univariate.ConstantMean.fix


Allows an ARCHModelFixedResult to be constructed from fixed parameters.

Parameters

params  [[ndarray, Series]] User specified parameters to use when generating the result.
          Must have the correct number of parameters for a given choice of mean model, volatility
          model and distribution.

first_obs  [[int, str, datetime, Timestamp]] First observation to use when fixing model

last_obs  [[int, str, datetime, Timestamp]] Last observation to use when fixing model

Returns

results  [ARCHModelFixedResult] Object containing model results

Notes

Parameters are not checked against model-specific constraints.

Return type  ARCHModelFixedResult

arch.univariate.ConstantMean.forecast

ConstantMean.forecast(self, params: Union[numpy.ndarray, pandas.core.series.Series], horizon: int = 1, start: Union[int, str, datetime.datetime, numpy.datetime64, pandas._libs.tslibs.timestamps.Timestamp, NoneType] = None, align: str = 'origin', method: str = 'analytic', simulations: int = 1000, rng: Union[Callable[[Union[int, Tuple[int, ...]]], numpy.ndarray], NoneType] = None, random_state: Union[numpy.random.mtrand.RandomState, NoneType] = None) → arch.univariate.base.ARCHModelForecast

Construct forecasts from estimated model

Parameters

params  [[ndarray, Series], optional] Alternative parameters to use. If not provided, the
          parameters estimated when fitting the model are used. Must be identical in shape to the
          parameters computed by fitting the model.

horizon  [int, optional] Number of steps to forecast
**start** [[int, datetime, Timestamp, str], optional] An integer, datetime or str indicating the first observation to produce the forecast for. Datetimes can only be used with pandas inputs that have a datetime index. Strings must be convertible to a date time, such as in ‘1945-01-01’.

**align** [str, optional] Either ‘origin’ or ‘target’. When set to ‘origin’, the t-th row of forecasts contains the forecasts for t+1, t+2, ..., t+h. When set to ‘target’, the t-th row contains the 1-step ahead forecast from time t-1, the 2 step from time t-2, ..., and the h-step from time t-h. ‘target’ simplified computing forecast errors since the realization and h-step forecast are aligned.

**method** [[‘analytic’, ‘simulation’, ‘bootstrap’]] Method to use when producing the forecast. The default is analytic. The method only affects the variance forecast generation. Not all volatility models support all methods. In particular, volatility models that do not evolve in squares such as EGARCH or TARCH do not support the ‘analytic’ method for horizons > 1.

**simulations** [int] Number of simulations to run when computing the forecast using either simulation or bootstrap.

**rng** [callable, optional] Custom random number generator to use in simulation-based forecasts. Must produce random samples using the syntax `rng(size)` where size the 2-element tuple (simulations, horizon).

**random_state** [RandomState, optional] NumPy RandomState instance to use when method is ‘bootstrap’

**Returns**

**forecasts** [ARCHModelForecast] t by h data frame containing the forecasts. The alignment of the forecasts is controlled by `align`.

**Notes**

The most basic 1-step ahead forecast will return a vector with the same length as the original data, where the t-th value will be the time-t forecast for time t + 1. When the horizon is > 1, and when using the default value for `align`, the forecast value in position [t, h] is the time-t, h+1 step ahead forecast.

If model contains exogenous variables (model.x is not None), then only 1-step ahead forecasts are available. Using horizon > 1 will produce a warning and all columns, except the first, will be nan-filled.

If `align` is ‘origin’, forecast[t,h] contains the forecast made using y[t] (that is, up to but not including t) for horizon h + 1. For example, y[100,2] contains the 3-step ahead forecast using the first 100 data points, which will correspond to the realization y[100 + 2]. If `align` is ‘target’, then the same forecast is in location [102, 2], so that it is aligned with the observation to use when evaluating, but still in the same column.

**Examples**

```python
>>> import pandas as pd
>>> from arch import arch_model
>>> am = arch_model(None,mean='HAR',lags=[1,5,22],vol='Constant')
>>> sim_data = am.simulate([0.1,0.4,0.3,0.2,1.0], 250)
>>> sim_data.index = pd.date_range('2000-01-01',periods=250)
>>> am = arch_model(sim_data['data'],mean='HAR',lags=[1,5,22], ...
| | |vol='Constant')
>>> res = am.fit()
>>> fig = res.hedgehog_plot()
```
Return type ARCHModelForecast

arch.univariate.ConstantMean.parameter_names

ConstantMean.parameter_names(self) → List[str]

List of parameters names

Returns

names [list (str)] List of variable names for the mean model

Return type List[str]

arch.univariate.ConstantMean.resids


Compute model residuals

Parameters

params [ndarray] Model parameters
y [ndarray, optional] Alternative values to use when computing model residuals
regressors [ndarray, optional] Alternative regressor values to use when computing model residuals

Returns

resids [ndarray] Model residuals

Return type Union[ndarray, DataFrame, Series]

arch.univariate.ConstantMean.simulate

ConstantMean.simulate(self, params: Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series], nobs: int, burn: int = 500, initial_value: Union[float, numpy.ndarray, NoneType] = None, x: Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series, NoneType] = None, initial_value_vol: Union[float, numpy.ndarray, NoneType] = None) → pandas.core.frame.DataFrame

Simulated data from a constant mean model

Parameters

params [ndarray] Parameters to use when simulating the model. Parameter order is [mean volatility distribution]. There is one parameter in the mean model, mu.
nobs [int] Length of series to simulate
burn [int, optional] Number of values to simulate to initialize the model and remove dependence on initial values.
initial_value [None] This value is not used.
x  [None] This value is not used.

initial_value_vol  [[ndarray, float], optional] An array or scalar to use when initializing the volatility process.

Returns

simulated_data  [DataFrame] DataFrame with columns data containing the simulated values, volatility, containing the conditional volatility and errors containing the errors used in the simulation

Examples

Basic data simulation with a constant mean and volatility

```python
>>> import numpy as np
>>> from arch.univariate import ConstantMean, GARCH

>>> cm = ConstantMean()
>>> cm.volatility = GARCH()
>>> cm_params = np.array([1])
>>> garch_params = np.array([0.01, 0.07, 0.92])
>>> params = np.concatenate((cm_params, garch_params))
>>> sim_data = cm.simulate(params, 1000)
```

Return type  DataFrame

arch.univariate.ConstantMean.starting_values

ConstantMean.starting_values(self) \rightarrow numpy.ndarray

Returns starting values for the mean model, often the same as the values returned from fit

Returns

sv  [ndarray] Starting values

Return type  ndarray

Properties

<table>
<thead>
<tr>
<th>name</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>distribution</td>
<td>Set or gets the error distribution</td>
</tr>
<tr>
<td>name</td>
<td>The name of the model.</td>
</tr>
<tr>
<td>num_params</td>
<td>Returns the number of parameters</td>
</tr>
<tr>
<td>volatility</td>
<td>Set or gets the volatility process</td>
</tr>
<tr>
<td>x</td>
<td>Gets the value of the exogenous regressors in the model</td>
</tr>
<tr>
<td>y</td>
<td>Returns the dependent variable</td>
</tr>
</tbody>
</table>

arch.univariate.ConstantMean.distribution

ConstantMean.distribution

Set or gets the error distribution

Distributions must be a subclass of Distribution
Return type `Distribution`

`arch.univariate.ConstantMean.name`

ConstantMean.name
The name of the model.

Return type `str`

`arch.univariate.ConstantMean.num_params`

ConstantMean.num_params
Returns the number of parameters

`arch.univariate.ConstantMean.volatility`

ConstantMean.volatility
Set or gets the volatility process
Volatility processes must be a subclass of VolatilityProcess

Return type `VolatilityProcess`

`arch.univariate.ConstantMean.x`

ConstantMean.x
 Gets the value of the exogenous regressors in the model

Return type `Union[ndarray, DataFrame, Series]`

`arch.univariate.ConstantMean.y`

ConstantMean.y
Returns the dependent variable

Return type `Union[ndarray, DataFrame, Series, None]`

1.7.3 `arch.univariate.ARX`

class arch.univariate.ARX(y=None, x=None, lags=None, constant=True, hold_back=None, volatility=None, distribution=None, rescale=None)
Autoregressive model with optional exogenous regressors estimation and simulation

Parameters

- y ([ndarray, Series]) nobs element vector containing the dependent variable
- x ([ndarray, DataFrame], optional) nobs by k element array containing exogenous regressors
- lags [scalar, 1-d array, optional] Description of lag structure of the HAR. Scalar included all lags between 1 and the value. A 1-d array includes the AR lags lags[0], lags[1], ...
- constant [bool, optional] Flag whether the model should include a constant
hold_back [int] Number of observations at the start of the sample to exclude when estimating model parameters. Used when comparing models with different lag lengths to estimate on the common sample.

rescale [bool, optional] Flag indicating whether to automatically rescale data if the scale of the data is likely to produce convergence issues when estimating model parameters. If False, the model is estimated on the data without transformation. If True, than y is rescaled and the new scale is reported in the estimation results.

Notes

The AR-X model is described by

\[ y_t = \mu + \sum_{i=1}^{p} \phi_i y_{t-L_i} + \gamma' x_t + \epsilon_t \]

Examples

```python
>>> import numpy as np
>>> from arch.univariate import ARX
>>> y = np.random.randn(100)
>>> arx = ARX(y, lags=[1, 5, 22])
>>> res = arx.fit()
```

Estimating an AR with GARCH(1,1) errors

```python
>>> from arch.univariate import GARCH
>>> arx.volatility = GARCH()
>>> res = arx.fit(update_freq=0, disp='off')
```

Methods

```python
ARX.bounds (self) → List[Tuple[float, float]]
Construct bounds for parameters to use in non-linear optimization
```
Returns

**bounds**  [list (2-tuple of float)] Bounds for parameters to use in estimation.

**Return type** List[Tuple[float, float]]

---

**arch.univariate.ARX.compute_param_cov**

*ARX.compute_param_cov*(self, params: numpy.ndarray, backcast: Union[float, NoneType] = None, robust: bool = True) → numpy.ndarray

Computes parameter covariances using numerical derivatives.

**Parameters**

- **params** [ndarray] Model parameters
- **backcast** [float] Value to use for pre-sample observations
- **robust** [bool, optional] Flag indicating whether to use robust standard errors (True) or classic MLE (False)

**Return type** ndarray

---

**arch.univariate.ARX.constraints**

*ARX.constraints*(self) → Tuple[numpy.ndarray, numpy.ndarray]

Construct linear constraint arrays for use in non-linear optimization

**Returns**

- **a** [ndarray] Number of constraints by number of parameters loading array
- **b** [ndarray] Number of constraints array of lower bounds

**Notes**

Parameters satisfy a.dot(parameters) - b >= 0

**Return type** Tuple[ndarray, ndarray]

---

**arch.univariate.ARX.fit**


Fits the model given a nobs by 1 vector of sigma2 values

**Parameters**

- **update_freq** [int, optional] Frequency of iteration updates. Output is generated every update_freq iterations. Set to 0 to disable iterative output.
- **disp** [str] Either ‘final’ to print optimization result or ‘off’ to display nothing
starting_values  [ndarray, optional] Array of starting values to use. If not provided, starting values are constructed by the model components.

cov_type  [str, optional] Estimation method of parameter covariance. Supported options are ‘robust’, which does not assume the Information Matrix Equality holds and ‘classic’ which does. In the ARCH literature, ‘robust’ corresponds to Bollerslev-Wooldridge covariance estimator.

show_warning  [bool, optional] Flag indicating whether convergence warnings should be shown.

first_obs  [[int, str, datetime, Timestamp]] First observation to use when estimating model

last_obs  [[int, str, datetime, Timestamp]] Last observation to use when estimating model

tol  [float, optional] Tolerance for termination.


backcast  [float, optional] Value to use as backcast. Should be measure $\sigma_0^2$ since model-specific non-linear transformations are applied to value before computing the variance recursions.

Returns

results  [ARCHModelResult] Object containing model results

Notes

A ConvergenceWarning is raised if SciPy’s optimizer indicates difficulty finding the optimum.

Parameters are optimized using SLSQP.

Return type  ARCHModelResult

arch.univariate.ARX.fix

ARX.fix(self, params: Union[Sequence[float], numpy.ndarray, pandas.core.series.Series], first_obs: Union[int, str, datetime, numpy.datetime64, pandas._libs.tslibs.timestamps.Timestamp] = None, last_obs: Union[int, str, datetime, numpy.datetime64, pandas._libs.tslibs.timestamps.Timestamp] = None)  →  'ARCHModelFixedResult'

Allows an ARCHModelFixedResult to be constructed from fixed parameters.

Parameters

params  [[ndarray, Series]] User specified parameters to use when generating the result. Must have the correct number of parameters for a given choice of mean model, volatility model and distribution.

first_obs  [[int, str, datetime, Timestamp]] First observation to use when fixing model

last_obs  [[int, str, datetime, Timestamp]] Last observation to use when fixing model

Returns

results  [ARCHModelFixedResult] Object containing model results
Notes

Parameters are not checked against model-specific constraints.

**Return type** `ARCHModelFixedResult`

**arch.univariate.ARX.forecast**

```python
def ARX.forecast(self, params: Union[numpy.ndarray, pandas.core.series.Series], horizon: int = 1, start: Union[int, str, datetime.datetime, numpy.datetime64, pandas._libs.tslibs.timestamps.Timestamp, NoneType] = None, align: str = 'origin', method: str = 'analytic', simulations: int = 1000, rng: Union[Callable[[Union[int, Tuple[int, ...]]], numpy.ndarray], NoneType] = None, random_state: Union[numpy.random.mtrand.RandomState, NoneType] = None) -> arch.univariate.base.ARCHModelForecast
```

Construct forecasts from estimated model

**Parameters**

- **params** ([ndarray, Series], optional) Alternative parameters to use. If not provided, the parameters estimated when fitting the model are used. Must be identical in shape to the parameters computed by fitting the model.

- **horizon** [int, optional] Number of steps to forecast

- **start** ([int, datetime, Timestamp, str], optional) An integer, datetime or str indicating the first observation to produce the forecast for. Datetimes can only be used with pandas inputs that have a datetime index. Strings must be convertible to a date time, such as in ‘1945-01-01’.

- **align** [str, optional] Either ‘origin’ or ‘target’. When set of ‘origin’, the t-th row of forecasts contains the forecasts for t+1, t+2, ... , t+h. When set to ‘target’, the t-th row contains the 1-step ahead forecast from time t-1, the 2 step from time t-2, ..., and the h-step from time t-h. ‘target’ simplified computing forecast errors since the realization and h-step forecast are aligned.

- **method** [‘analytic’, ‘simulation’, ‘bootstrap’] Method to use when producing the forecast. The default is analytic. The method only affects the variance forecast generation. Not all volatility models support all methods. In particular, volatility models that do not evolve in squares such as EGARCH or TARCH do not support the ‘analytic’ method for horizons > 1.

- **simulations** [int] Number of simulations to run when computing the forecast using either simulation or bootstrap.

- **rng** [callable, optional] Custom random number generator to use in simulation-based forecasts. Must produce random samples using the syntax `rng(size)` where size the 2-element tuple (simulations, horizon).

- **random_state** [RandomState, optional] NumPy RandomState instance to use when method is ‘bootstrap’

**Returns**

- **forecasts** [ARCHModelForecast] t by h data frame containing the forecasts. The alignment of the forecasts is controlled by `align`
Notes

The most basic 1-step ahead forecast will return a vector with the same length as the original data, where
the t-th value will be the time-t forecast for time t + 1. When the horizon is > 1, and when using the default
value for align, the forecast value in position [t, h] is the time-t, h+1 step ahead forecast.

If model contains exogenous variables (model.x is not None), then only 1-step ahead forecasts are avail-
able. Using horizon > 1 will produce a warning and all columns, except the first, will be nan-filled.

If align is ‘origin’, forecast[t,h] contains the forecast made using y[:t] (that is, up to but not including t)
for horizon h + 1. For example, y[100,2] contains the 3-step ahead forecast using the first 100 data points,
which will correspond to the realization y[100 + 2]. If align is ‘target’, then the same forecast is in location
[102, 2], so that it is aligned with the observation to use when evaluating, but still in the same column.

Examples

```python
>>> import pandas as pd
>>> from arch import arch_model
>>> am = arch_model(None, mean='HAR', lags=[1,5,22], vol='Constant')
>>> sim_data = am.simulate([0.1, 0.4, 0.3, 0.2, 1.0], 250)
>>> sim_data.index = pd.date_range('2000-01-01', periods=250)
>>> am = arch_model(sim_data['data'], mean='HAR', lags=[1,5,22], vol='Constant')
>>> res = am.fit()
>>> fig = res.hedgehog_plot()
```

Return type `ARCHModelForecast`

```
arch.univariate.ARX.parameter_names

ARX.parameter_names(self) → List[str]
List of parameters names

Returns

names [list (str)] List of variable names for the mean model

Return type List[str]
```

```
arch.univariate.ARX.resids

Compute model residuals

Parameters

params [ndarray] Model parameters

y [ndarray, optional] Alternative values to use when computing model residuals

regressors [ndarray, optional] Alternative regressor values to use when computing model residuals
```
Returns

resids [ndarray] Model residuals

Return type Union [ndarray, DataFrame, Series]

arch.univariate.ARX.simulate

ARX.simulate(self, params: Sequence[float], nobs: int, burn: int = 500, initial_value: Union[float, numpy.ndarray, NoneType] = None, x: Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series, NoneType] = None, initial_value_vol: Union[float, numpy.ndarray, NoneType] = None) → pandas.core.frame.DataFrame

Simulates data from a linear regression, AR or HAR models

Parameters

params [ndarray] Parameters to use when simulating the model. Parameter order is [mean, volatility distribution] where the parameters of the mean model are ordered [constant, lag[0], lag[1]... lag[p], ex[0]... ex[k-1]], where lag[j] indicates the coefficient on the jth lag in the model and ex[j] is the coefficient on the jth exogenous variable.

nobs [int] Length of series to simulate

burn [int, optional] Number of values to simulate to initialize the model and remove dependence on initial values.

initial_value [(ndarray, float), optional] Either a scalar value or max(lags) array set of initial values to use when initializing the model. If omitted, 0.0 is used.

x [(ndarray, DataFrame), optional] nobs + burn by k array of exogenous variables to include in the simulation.

initial_value_vol [(ndarray, float), optional] An array or scalar to use when initializing the volatility process.

Returns

simulated_data [DataFrame] DataFrame with columns data containing the simulated values, volatility, containing the conditional volatility and errors containing the errors used in the simulation

Examples

```python
>>> import numpy as np
>>> from arch.univariate import HARX, GARCH
>>> harx = HARX(lags=[1, 5, 22])
>>> harx.volatility = GARCH()
>>> harx_params = np.array([1, 0.2, 0.3, 0.4])
>>> garch_params = np.array([0.01, 0.07, 0.92])
>>> params = np.concatenate((harx_params, garch_params))
>>> sim_data = harx.simulate(params, 1000)
```

Simulating models with exogenous regressors requires the regressors to have nobs plus burn data points

```python
>>> nobs = 100
>>> burn = 200
>>> x = np.random.randn(nobs + burn, 2)
```
>>> x_params = np.array([1.0, 2.0])
>>> params = np.concatenate((harx_params, x_params, garch_params))
>>> sim_data = harx.simulate(params, nobs=nobs, burn=burn, x=x)

Return type DataFrame

arch.univariate.ARX.starting_values

ARX.starting_values(self) -> numpy.ndarray
    Returns starting values for the mean model, often the same as the values returned from fit
    Returns
    sv [ndarray] Starting values

Return type ndarray

Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>distribution</td>
<td>Set or gets the error distribution</td>
</tr>
<tr>
<td>name</td>
<td>The name of the model.</td>
</tr>
<tr>
<td>num_params</td>
<td>Returns the number of parameters</td>
</tr>
<tr>
<td>volatility</td>
<td>Set or gets the volatility process</td>
</tr>
<tr>
<td>x</td>
<td>Gets the value of the exogenous regressors in the model</td>
</tr>
<tr>
<td>y</td>
<td>Returns the dependent variable</td>
</tr>
</tbody>
</table>

arch.univariate.ARX.distribution

ARX.distribution
    Set or gets the error distribution
    Distributions must be a subclass of Distribution
    Return type Distribution

arch.univariate.ARX.name

ARX.name
    The name of the model.
    Return type str

arch.univariate.ARX.num_params

ARX.num_params
    Returns the number of parameters
arch.univariate.ARX.volatility

ARX volatility
Set or gets the volatility process

Volatility processes must be a subclass of VolatilityProcess

Return type VolatilityProcess

arch.univariate.ARX.x

ARX.x
Gets the value of the exogenous regressors in the model

Return type Union[ndarray, DataFrame, Series]

arch.univariate.ARX.y

ARX.y
Returns the dependent variable

Return type Union[ndarray, DataFrame, Series, None]

1.7.4 arch.univariate.HARX

class arch.univariate.HARX (y=None, x=None, lags=None, constant=True, use_rotated=False, hold_back=None, volatility=None, distribution=None, rescale=None)

Heterogeneous Autoregression (HAR), with optional exogenous regressors, model estimation and simulation

Parameters

y [(ndarray, Series)] nobs element vector containing the dependent variable

x [(ndarray, DataFrame), optional] nobs by k element array containing exogenous regressors

lags [scalar, ndarray], optional] Description of lag structure of the HAR. Scalar included all lags between 1 and the value. A 1-d array includes the HAR lags 1:lags[0], 1:lags[1], . . . A 2-d array includes the HAR lags of the form lags[0,j]:lags[1,j] for all columns of lags.

constant [bool, optional] Flag whether the model should include a constant

use_rotated [bool, optional] Flag indicating to use the alternative rotated form of the HAR where HAR lags do not overlap

hold_back [int] Number of observations at the start of the sample to exclude when estimating model parameters. Used when comparing models with different lag lengths to estimate on the common sample.

volatility [VolatilityProcess, optional] Volatility process to use in the model

distribution [Distribution, optional] Error distribution to use in the model

rescale [bool, optional] Flag indicating whether to automatically rescale data if the scale of the data is likely to produce convergence issues when estimating model parameters. If False, the model is estimated on the data without transformation. If True, then y is rescaled and the new scale is reported in the estimation results.
Notes

The HAR-X model is described by

\[ y_t = \mu + \sum_{i=1}^{P} \phi_i \bar{y}_{t-L_i,0:L_i,1} + \gamma' x_t + \epsilon_t \]

where \( \bar{y}_{t-L_i,0:L_i,1} \) is the average value of \( y_t \) between \( t - L_i,0 \) and \( t - L_i,1 \).

Examples

```python
>>> import numpy as np
>>> from arch.univariate import HARX
>>> y = np.random.randn(100)
>>> harx = HARX(y, lags=[1, 5, 22])
>>> res = harx.fit()

>>> from pandas import Series, date_range
>>> index = date_range('2000-01-01', freq='M', periods=y.shape[0])
>>> y = Series(y, name='y', index=index)
>>> har = HARX(y, lags=[1, 6], hold_back=10)
```

Methods

```
arch.univariate.HARX.bounds

HARX.bounds(self) \rightarrow List[Tuple[float, float]]
Construct bounds for parameters to use in non-linear optimization

Returns

bounds [list (2-tuple of float)] Bounds for parameters to use in estimation.

Return type List[Tuple[float, float]]
```

Chapter 1. Univariate Volatility Models
arch.univariate.HARX.compute_param_cov

HARX.compute_param_cov(self, params: numpy.ndarray, backcast: Union[float, NoneType] = None, robust: bool = True) → numpy.ndarray

Computes parameter covariances using numerical derivatives.

Parameters

- **params**: [ndarray] Model parameters
- **backcast**: [float] Value to use for pre-sample observations
- **robust**: [bool, optional] Flag indicating whether to use robust standard errors (True) or classic MLE (False)

Return type: ndarray

arch.univariate.HARX.constraints

HARX.constraints(self) → Tuple[numpy.ndarray, numpy.ndarray]

Construct linear constraint arrays for use in non-linear optimization

Returns

- **a**: [ndarray] Number of constraints by number of parameters loading array
- **b**: [ndarray] Number of constraints array of lower bounds

Notes

Parameters satisfy a.dot(parameters) - b >= 0

Return type: Tuple[ndarray, ndarray]

arch.univariate.HARX.fit


Fits the model given a nobs by 1 vector of sigma2 values

Parameters

- **update_freq**: [int, optional] Frequency of iteration updates. Output is generated every update_freq iterations. Set to 0 to disable iterative output.
- **disp**: [str] Either ‘final’ to print optimization result or ‘off’ to display nothing
- **starting_values**: [ndarray, optional] Array of starting values to use. If not provided, starting values are constructed by the model components.
- **cov_type**: [str, optional] Estimation method of parameter covariance. Supported options are ‘robust’, which does not assume the Information Matrix Equality holds and ‘classic’ which does. In the ARCH literature, ‘robust’ corresponds to Bollerslev-Wooldridge covariance estimator.
show_warning [bool, optional] Flag indicating whether convergence warnings should be shown.

first_obs [[int, str, datetime, Timestamp]] First observation to use when estimating model

last_obs [[int, str, datetime, Timestamp]] Last observation to use when estimating model

tol [float, optional] Tolerance for termination.

options [dict, optional] Options to pass to scipy.optimize.minimize. Valid entries include ’ftol’, ’eps’, ’disp’, and ’maxiter’.

backcast [float, optional] Value to use as backcast. Should be measure $\sigma_0^2$ since model-specific non-linear transformations are applied to value before computing the variance recursions.

Returns

results [ARCHModelResult] Object containing model results

Notes

A ConvergenceWarning is raised if SciPy’s optimizer indicates difficulty finding the optimum.

Parameters are optimized using SLSQP.

Return type ARCHModelResult

arch.univariate.HARX.fix

HARX.fix(self, params: Union[Sequence[float], numpy.ndarray, pandas.core.series.Series], first_obs: Union[int, str, datetime.datetime, numpy.datetime64, pandas._libs.tslibs.timestamps.Timestamp] = None, last_obs: Union[int, str, datetime.datetime, numpy.datetime64, pandas._libs.tslibs.timestamps.Timestamp] = None) → 'ARCHModelFixedResult'

Allows an ARCHModelFixedResult to be constructed from fixed parameters.

Parameters

params [[ndarray, Series]] User specified parameters to use when generating the result. Must have the correct number of parameters for a given choice of mean model, volatility model and distribution.

first_obs [[int, str, datetime, Timestamp]] First observation to use when fixing model

last_obs [[int, str, datetime, Timestamp]] Last observation to use when fixing model

Returns

results [ARCHModelFixedResult] Object containing model results

Notes

Parameters are not checked against model-specific constraints.

Return type ARCHModelFixedResult
arch.univariate.HARX.forecast

**HARX.forecast** (self, params: Union[numpy.ndarray, pandas.core.series.Series], horizon: int = 1, start: Union[int, str, datetime.datetime, numpy.datetime64, pandas._libs.tslibs.timestamps.Timestamp, NoneType] = None, align: str = 'origin', method: str = 'analytic', simulations: int = 1000, rng: Union[Callable[[Union[int, Tuple[int, ...]]], numpy.ndarray], NoneType] = None, random_state: Union[numpy.random.mtrand.RandomState, NoneType] = None) → arch.univariate.base.ARCHModelForecast

Construct forecasts from estimated model

**Parameters**

- **params** ([ndarray, Series], optional) Alternative parameters to use. If not provided, the parameters estimated when fitting the model are used. Must be identical in shape to the parameters computed by fitting the model.

- **horizon** ([int, optional]) Number of steps to forecast

- **start** ([int, datetime, Timestamp, str], optional) An integer, datetime or str indicating the first observation to produce the forecast for. Datetimes can only be used with pandas inputs that have a datetime index. Strings must be convertible to a date time, such as in ‘1945-01-01’.

- **align** (str, optional) Either ‘origin’ or ‘target’. When set of ‘origin’, the t-th row of forecasts contains the forecasts for t+1, t+2, ..., t+h. When set to ‘target’, the t-th row contains the 1-step ahead forecast from time t-1, the 2 step from time t-2, ..., and the h-step from time t-h. ‘target’ simplified computing forecast errors since the realization and h-step forecast are aligned.

- **method** ([‘analytic’, ‘simulation’, ‘bootstrap’]) Method to use when producing the forecast. The default is analytic. The method only affects the variance forecast generation. Not all volatility models support all methods. In particular, volatility models that do not evolve in squares such as EGARCH or TARCH do not support the ‘analytic’ method for horizons > 1.

- **simulations** [int] Number of simulations to run when computing the forecast using either simulation or bootstrap.

- **rng** [callable, optional] Custom random number generator to use in simulation-based forecasts. Must produce random samples using the syntax `rng(size)` where size the 2-element tuple (simulations, horizon).

- **random_state** [RandomState, optional] NumPy RandomState instance to use when method is ‘bootstrap’

**Returns**

- **forecasts** [ARCHModelForecast] t by h data frame containing the forecasts. The alignment of the forecasts is controlled by `align`.

**Notes**

The most basic 1-step ahead forecast will return a vector with the same length as the original data, where the t-th value will be the time-t forecast for time t + 1. When the horizon is > 1, and when using the default value for `align`, the forecast value in position [t, h] is the time-t, h+1 step ahead forecast.

If model contains exogenous variables (model.x is not None), then only 1-step ahead forecasts are available. Using horizon > 1 will produce a warning and all columns, except the first, will be nan-filled.

1.7. Mean Models 65
If `align` is ‘origin’, forecast[t,h] contains the forecast made using y[:t] (that is, up to but not including t) for horizon h + 1. For example, y[100,2] contains the 3-step ahead forecast using the first 100 data points, which will correspond to the realization y[100 + 2]. If `align` is ‘target’, then the same forecast is in location [102, 2], so that it is aligned with the observation to use when evaluating, but still in the same column.

### Examples

```python
>>> import pandas as pd
>>> from arch import arch_model
>>> am = arch_model(None, mean='HAR', lags=[1, 5, 22], vol='Constant')
>>> sim_data = am.simulate([0.1, 0.4, 0.3, 0.2, 1.0], 250)
>>> sim_data.index = pd.date_range('2000-01-01', periods=250)
>>> am = arch_model(sim_data['data'], mean='HAR', lags=[1, 5, 22], ...
 → vol='Constant')
>>> res = am.fit()
>>> fig = res.hedgehog_plot()
```

Return type `ARCHModelForecast`

#### arch.univariate.HARX.parameter_names

**HARX.parameter_names** *(self) → List[str]*

List of parameters names

Returns

- `names` [list (str)] List of variable names for the mean model

Return type `List[str]`

#### arch.univariate.HARX.resids


Compute model residuals

Parameters

- `params` [ndarray] Model parameters
- `y` [ndarray, optional] Alternative values to use when computing model residuals
- `regressors` [ndarray, optional] Alternative regressor values to use when computing model residuals

Returns

- `resids` [ndarray] Model residuals

Return type `Union[ndarray, DataFrame, Series]`
arch.univariate.HARX.simulate

```python
HARX.simulate(self, params: Sequence[float], nobs: int, burn: int = 500, initial_value: Union[float, numpy.ndarray, NoneType] = NoneType, x: Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series, NoneType] = None, initial_value_vol: Union[float, numpy.ndarray, NoneType] = None) -> pandas.core.frame.DataFrame
```

Simulates data from a linear regression, AR or HAR models

**Parameters**

- **params** [ndarray] Parameters to use when simulating the model. Parameter order is [mean\ volatility distribution] where the parameters of the mean model are ordered [constant\ lag[0]\ lag[1] ... lag[p]\ ex[0] ... ex[k-1]] where lag[j] indicates the coefficient on the jth lag in the model and ex[j] is the coefficient on the jth exogenous variable.

- **nobs** [int] Length of series to simulate

- **burn** [int, optional] Number of values to simulate to initialize the model and remove dependence on initial values.

- **initial_value** [ndarray, float], optional] Either a scalar value or max(lags) array set of initial values to use when initializing the model. If omitted, 0.0 is used.

- **x** [ndarray, DataFrame], optional] nobs + burn by k array of exogenous variables to include in the simulation.

- **initial_value_vol** [ndarray, float], optional] An array or scalar to use when initializing the volatility process.

**Returns**

- **simulated_data** [DataFrame] DataFrame with columns data containing the simulated values, volatility, containing the conditional volatility and errors containing the errors used in the simulation

**Examples**

```python
>>> import numpy as np
>>> from arch.univariate import HARX, GARCH
>>> harx = HARX(lags=[1, 5, 22])
>>> harx.volatility = GARCH()
>>> harx_params = np.array([1, 0.2, 0.3, 0.4])
>>> garch_params = np.array([0.01, 0.07, 0.92])
>>> params = np.concatenate((harx_params, garch_params))
>>> sim_data = harx.simulate(params, nobs=100)
```

Simulating models with exogenous regressors requires the regressors to have nobs plus burn data points

```python
>>> nobs = 100
>>> burn = 200
>>> x = np.random.randn(nobs + burn, 2)
>>> x_params = np.array([1.0, 2.0])
>>> params = np.concatenate((harx_params, x_params, garch_params))
>>> sim_data = harx.simulate(params, nobs=nobs, burn=burn, x=x)
```

**Return type** DataFrame

1.7. Mean Models
arch.univariate.HARX.starting_values

HARX.starting_values(self) → numpy.ndarray
Returns starting values for the mean model, often the same as the values returned from fit

Returns

sv [ndarray] Starting values

Return type ndarray

Properties

distribution
    Set or gets the error distribution

name
    The name of the model.

num_params
    Returns the number of parameters

volatility
    Set or gets the volatility process

x
    Gets the value of the exogenous regressors in the model

y
    Returns the dependent variable

arch.univariate.HARX.distribution

HARX.distribution
    Set or gets the error distribution

    Distributions must be a subclass of Distribution

    Return type Distribution

arch.univariate.HARX.name

HARX.name
    The name of the model.

    Return type str

arch.univariate.HARX.num_params

HARX.num_params
    Returns the number of parameters

arch.univariate.HARX.volatility

HARX.volatility
    Set or gets the volatility process

    Volatility processes must be a subclass of VolatilityProcess

    Return type VolatilityProcess
arch.univariate.HARX.x

HARX.x

Gets the value of the exogenous regressors in the model

Return type Union[ndarray, DataFrame, Series]

arch.univariate.HARX.y

HARX.y

Returns the dependent variable

Return type Union[ndarray, DataFrame, Series, None]

1.7.5 arch.univariate.LS

class arch.univariate.LS (y=None, x=None, constant=True, hold_back=None, volatility=None, distribution=None, rescale=None)

Least squares model estimation and simulation

Parameters

y {[ndarray, Series]} nobs element vector containing the dependent variable
x {[ndarray, DataFrame], optional} nobs by k element array containing exogenous regressors
constant [bool, optional] Flag whether the model should include a constant
hold_back [int] Number of observations at the start of the sample to exclude when estimating model parameters. Used when comparing models with different lag lengths to estimate on the common sample.
volatility [VolatilityProcess, optional] Volatility process to use in the model
distribution [Distribution, optional] Error distribution to use in the model
rescale [bool, optional] Flag indicating whether to automatically rescale data if the scale of the data is likely to produce convergence issues when estimating model parameters. If False, the model is estimated on the data without transformation. If True, than y is rescaled and the new scale is reported in the estimation results.

Notes

The LS model is described by

\[ y_t = \mu + \gamma' x_t + \epsilon_t \]

Examples

```python
>>> import numpy as np
>>> from arch.univariate import LS
>>> y = np.random.randn(100)
>>> x = np.random.randn(100, 2)
>>> ls = LS(y, x)
>>> res = ls.fit()
```
## Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bounds(self)</code></td>
<td>Construct bounds for parameters to use in non-linear optimization</td>
</tr>
<tr>
<td><code>compute_param_cov(self, params, backcast, ...)</code></td>
<td>Computes parameter covariances using numerical derivatives.</td>
</tr>
<tr>
<td><code>constraints(self)</code></td>
<td>Construct linear constraint arrays for use in non-linear optimization</td>
</tr>
<tr>
<td><code>fit(self, update_freq, disp, ...)</code></td>
<td>Fits the model given a nobs by 1 vector of sigma2 values</td>
</tr>
<tr>
<td><code>fix(self, params, numpy.ndarray, ...)</code></td>
<td>Allows an ARCHModelFixedResult to be constructed from fixed parameters.</td>
</tr>
<tr>
<td><code>forecast(self, params, ...)</code></td>
<td>Construct forecasts from estimated model</td>
</tr>
<tr>
<td><code>parameter_names(self)</code></td>
<td>List of parameters names</td>
</tr>
<tr>
<td><code>resids(self, params, y, ...)</code></td>
<td>Compute model residuals</td>
</tr>
<tr>
<td><code>simulate(self, params, nobs, burn, ...)</code></td>
<td>Simulates data from a linear regression, AR or HAR models</td>
</tr>
<tr>
<td><code>starting_values(self)</code></td>
<td>Returns starting values for the mean model, often the same as the values returned from fit</td>
</tr>
</tbody>
</table>

### arch.univariate.LS.bounds

**arch.univariate.LS.bounds**

```python
LS.bounds (self) → List[Tuple[float, float]]
```

Construct bounds for parameters to use in non-linear optimization

**Returns**

- **bounds** [list (2-tuple of float)] Bounds for parameters to use in estimation.

**Return type** `List[Tuple[float, float]]`

### arch.univariate.LS.compute_param_cov

**arch.univariate.LS.compute_param_cov**

```python
LS.compute_param_cov (self, params: numpy.ndarray, backcast: Union[float, NoneType] = None, robust: bool = True) → numpy.ndarray
```

Computes parameter covariances using numerical derivatives.

**Parameters**

- **params** [ndarray] Model parameters
- **backcast** [float] Value to use for pre-sample observations
- **robust** [bool, optional] Flag indicating whether to use robust standard errors (True) or classic MLE (False)

**Return type** `ndarray`

### arch.univariate.LS.constraints

**arch.univariate.LS.constraints**

```python
LS.constraints (self) → Tuple[numpy.ndarray, numpy.ndarray]
```

Construct linear constraint arrays for use in non-linear optimization

**Returns**
a [ndarray] Number of constraints by number of parameters loading array
b [ndarray] Number of constraints array of lower bounds

Notes
Parameters satisfy a.dot(parameters) - b >= 0

Return type Tuple[ndarray,ndarray]

arch.univariate.LS.fit

LS.fit(self, update_freq: int = 1, disp: str = 'final', starting_values: Union[numpy.ndarray, pandas.core.series.Series] = None, cov_type: str = 'robust', show_warning: bool = True, first_obs: Union[int, str, datetime.datetime, numpy.datetime64, pandas._libs.tslibs.timestamps.Timestamp] = None, last_obs: Union[int, str, datetime.datetime, numpy.datetime64, pandas._libs.tslibs.timestamps.Timestamp] = None, tol: Union[float, NoneType] = None, options: Union[Dict[str, Any], NoneType] = None, backcast: Union[float, numpy.ndarray, NoneType] = None) \rightarrow\ 'ARCHModelResult'

Fits the model given a nobs by 1 vector of sigma2 values

Parameters

update_freq [int, optional] Frequency of iteration updates. Output is generated every update_freq iterations. Set to 0 to disable iterative output.
disp [str] Either ‘final’ to print optimization result or ‘off’ to display nothing
starting_values [ndarray, optional] Array of starting values to use. If not provided, starting values are constructed by the model components.
cov_type [str, optional] Estimation method of parameter covariance. Supported options are ‘robust’, which does not assume the Information Matrix Equality holds and ‘classic’ which does. In the ARCH literature, ‘robust’ corresponds to Bollerslev-Wooldridge covariance estimator.
show_warning [bool, optional] Flag indicating whether convergence warnings should be shown.
first_obs [[int, str, datetime, Timestamp]] First observation to use when estimating model
last_obs [[int, str, datetime, Timestamp]] Last observation to use when estimating model
tol [float, optional] Tolerance for termination.
backcast [float, optional] Value to use as backcast. Should be measure $\sigma_0^2$ since model-specific non-linear transformations are applied to value before computing the variance recursions.

Returns

results [ARCHModelResult] Object containing model results
Notes

A ConvergenceWarning is raised if SciPy’s optimizer indicates difficulty finding the optimum.
Parameters are optimized using SLSQP.

Return type ARCHModelResult

arch.univariate.LS.fix

LS.fix(self, params: Union[Sequence[float], numpy.ndarray, pandas.core.series.Series], first_obs: Union[int, str, datetime.datetime, numpy.datetime64, pandas._libs.tslibs.timestamps.Timestamp] = None, last_obs: Union[int, str, datetime.datetime, numpy.datetime64, pandas._libs.tslibs.timestamps.Timestamp] = None) → 'ARCHModelFixedResult'

Allows an ARCHModelFixedResult to be constructed from fixed parameters.

Parameters

- **params** ([ndarray, Series]) User specified parameters to use when generating the result. Must have the correct number of parameters for a given choice of mean model, volatility model and distribution.
- **first_obs** ([int, str, datetime, Timestamp]) First observation to use when fixing model
- **last_obs** ([int, str, datetime, Timestamp]) Last observation to use when fixing model

Returns

- **results** [ARCHModelFixedResult] Object containing model results

Notes

Parameters are not checked against model-specific constraints.

Return type ARCHModelFixedResult

arch.univariate.LS.forecast

LS.forecast(self, params: Union[numpy.ndarray, pandas.core.series.Series], horizon: int = 1, start: Union[int, str, datetime.datetime, numpy.datetime64, pandas._libs.tslibs.timestamps.Timestamp, NoneType] = None, align: str = 'origin', method: str = 'analytic', simulations: int = 1000, rng: Union[Callable[[Union[int, Tuple[int, ...]]], numpy.ndarray], NoneType] = None, random_state: Union[numpy.random.mtrand.RandomState, NoneType] = None) → arch.univariate.base.ARCHModelForecast

Construct forecasts from estimated model

Parameters

- **params** ([ndarray, Series], optional) Alternative parameters to use. If not provided, the parameters estimated when fitting the model are used. Must be identical in shape to the parameters computed by fitting the model.
- **horizon** [int, optional] Number of steps to forecast
- **start** ([int, datetime, Timestamp, str], optional) An integer, datetime or str indicating the first observation to produce the forecast for. Datetimes can only be used with pandas
inputs that have a datetime index. Strings must be convertible to a date time, such as in ‘1945-01-01’.

**align** [str, optional] Either ‘origin’ or ‘target’. When set of ‘origin’, the t-th row of forecasts contains the forecasts for t+1, t+2, . . . , t+h. When set to ‘target’, the t-th row contains the 1-step ahead forecast from time t-1, the 2 step from time t-2, . . . , and the h-step from time t-h. ‘target’ simplified computing forecast errors since the realization and h-step forecast are aligned.

**method** [{'analytic', 'simulation', 'bootstrap'}] Method to use when producing the forecast. The default is analytic. The method only affects the variance forecast generation. Not all volatility models support all methods. In particular, volatility models that do not evolve in squares such as EGARCH or TARCH do not support the ‘analytic’ method for horizons > 1.

**simulations** [int] Number of simulations to run when computing the forecast using either simulation or bootstrap.

**rng** [callable, optional] Custom random number generator to use in simulation-based forecasts. Must produce random samples using the syntax $rng(size)$ where size the 2-element tuple (simulations, horizon).

**random_state** [RandomState, optional] NumPy RandomState instance to use when method is ‘bootstrap’

**Returns**

**forecasts** [ARCHModelForecast] t by h data frame containing the forecasts. The alignment of the forecasts is controlled by align.

**Notes**

The most basic 1-step ahead forecast will return a vector with the same length as the original data, where the t-th value will be the time-t forecast for time t + 1. When the horizon is > 1, and when using the default value for align, the forecast value in position [t, h] is the time-t, h+1 step ahead forecast.

If model contains exogenous variables (model.x is not None), then only 1-step ahead forecasts are available. Using horizon > 1 will produce a warning and all columns, except the first, will be nan-filled.

If align is ‘origin’, forecast[t,h] contains the forecast made using y[:t] (that is, up to but not including t) for horizon h + 1. For example, y[100,2] contains the 3-step ahead forecast using the first 100 data points, which will correspond to the realization y[100 + 2]. If align is ‘target’, then the same forecast is in location [102, 2], so that it is aligned with the observation to use when evaluating, but still in the same column.

**Examples**

```python
>>> import pandas as pd
>>> from arch import arch_model
>>> am = arch_model(None, mean='HAR', lags=[1, 5, 22], vol='Constant')
>>> sim_data = am.simulate([0.1, 0.4, 0.3, 0.2, 1.0], 250)
>>> sim_data.index = pd.date_range('2000-01-01', periods=250)
>>> am = arch_model(sim_data['data'], mean='HAR', lags=[1, 5, 22], ...
 vol='Constant')
>>> res = am.fit()
>>> fig = res.hedgehog_plot()
```

**Return type** ARCHModelForecast

1.7. Mean Models 73
arch.univariate.LS.parameter_names

LS.parameter_names (self) → List[str]
List of parameters names

Returns

names [list (str)] List of variable names for the mean model

Return type List[str]

arch.univariate.LS.resids

Compute model residuals

Parameters

params [ndarray] Model parameters
y [ndarray, optional] Alternative values to use when computing model residuals
regressors [ndarray, optional] Alternative regressor values to use when computing model residuals

Returns

resids [ndarray] Model residuals

Return type Union[ndarray, DataFrame, Series]

arch.univariate.LS.simulate

LS.simulate (self, params: Sequence[float], nobs: int, burn: int = 500, initial_value: Union[float, numpy.ndarray, NoneType] = None, x: Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series, NoneType] = None, initial_value_vol: Union[float, numpy.ndarray, NoneType] = None) → pandas.core.frame.DataFrame
Simulates data from a linear regression, AR or HAR models

Parameters

params [ndarray] Parameters to use when simulating the model. Parameter order is [mean volatility distribution] where the parameters of the mean model are ordered [constant lag[0] lag[1] ... lag[p] ex[0] ... ex[k-1]] where lag[j] indicates the coefficient on the jth lag in the model and ex[j] is the coefficient on the jth exogenous variable.
nobs [int] Length of series to simulate
burn [int, optional] Number of values to simulate to initialize the model and remove dependence on initial values.
initial_value [ndarray, float, optional] Either a scalar value or max(lags) array set of initial values to use when initializing the model. If omitted, 0.0 is used.
x [ndarray, DataFrame, optional] nobs + burn by k array of exogenous variables to include in the simulation.
initial_value_vol  [[ndarray, float], optional] An array or scalar to use when initializing the volatility process.

Returns

simulated_data  [DataFrame] DataFrame with columns data containing the simulated values, volatility, containing the conditional volatility and errors containing the errors used in the simulation

Examples

```python
>>> import numpy as np
>>> from arch.univariate import HARX, GARCH

>>> harx = HARX(lags=[1, 5, 22])
>>> harx.volatility = GARCH()
>>> harx_params = np.array([1, 0.2, 0.3, 0.4])
>>> garch_params = np.array([0.01, 0.07, 0.92])
>>> params = np.concatenate((harx_params, garch_params))
>>> sim_data = harx.simulate(params, 1000)
```

Simulating models with exogenous regressors requires the regressors to have nobs plus burn data points

```python
>>> nobs = 100
>>> burn = 200
>>> x = np.random.randn(nobs + burn, 2)
>>> x_params = np.array([1.0, 2.0])
>>> params = np.concatenate((harx_params, x_params, garch_params))
>>> sim_data = harx.simulate(params, nobs=nobs, burn=burn, x=x)
```

Return type  DataFrame

arch.univariate.LS.starting_values

LS.starting_values(self) → numpy.ndarray

Returns starting values for the mean model, often the same as the values returned from fit

Returns

sv  [ndarray] Starting values

Return type  ndarray

Properties

distribution  Set or gets the error distribution
name  The name of the model.
num_params  Returns the number of parameters
volatility  Set or gets the volatility process
x  Gets the value of the exogenous regressors in the model
y  Returns the dependent variable

1.7. Mean Models  75
arch.univariate.LS.distribution

**LS.distribution**
Set or gets the error distribution
Distributions must be a subclass of Distribution

**Return type** Distribution

arch.univariate.LS.name

**LS.name**
The name of the model.

**Return type** str

arch.univariate.LS.num_params

**LS.num_params**
Returns the number of parameters

arch.univariate.LS.volatility

**LS.volatility**
Set or gets the volatility process
Volatility processes must be a subclass of VolatilityProcess

**Return type** VolatilityProcess

arch.univariate.LS.x

**LS.x**
Gets the value of the exogenous regressors in the model

**Return type** Union[ndarray, DataFrame, Series]

arch.univariate.LS.y

**LS.y**
Returns the dependent variable

**Return type** Union[ndarray, DataFrame, Series, None]

### 1.7.6 Writing New Mean Models

All mean models must inherit from :class:ARCHModel and provide all public methods. There are two optional private methods that should be provided if applicable.

\[
\text{ARCHModel}(\{y, \text{volatility, distribution, …}\})
\]

Abstract base class for mean models in ARCH processes.
arch.univariate.base.ARCHModel

class arch.univariate.base.ARCHModel(y=None, volatility=None, distribution=None, hold_back=None, rescale=None)

Abstract base class for mean models in ARCH processes. Specifies the conditional mean process. All public methods that raise `NotImplementedError` should be overridden by any subclass. Private methods that raise `NotImplementedError` are optional to override but recommended where applicable.

Methods

- `bounds(self)`
  Construct bounds for parameters to use in non-linear optimization

- `compute_param_cov(self, params, backcast, ...)`
  Computes parameter covariances using numerical derivatives.

- `constraints(self)`
  Construct linear constraint arrays for use in non-linear optimization

- `fit(self, update_freq, disp, ...)`
  Fits the model given a nobs by 1 vector of sigma2 values

- `fix(self, params, numpy.ndarray, ...)`
  Allows an ARCHModelFixedResult to be constructed from fixed parameters.

- `forecast(self, params, horizon, start, str, ...)`
  Construct forecasts from estimated model

- `parameter_names(self)`
  List of parameters names

- `resids(self, params, y, NoneType = None, ...)`
  Compute model residuals

- `simulate(self, params, ...)`

- `starting_values(self)`
  Returns starting values for the mean model, often the same as the values returned from fit

arch.univariate.base.ARCHModel.bounds

ARCHModel.bounds (self) → List[Tuple[float, float]]

Construct bounds for parameters to use in non-linear optimization

Returns

- `bounds` [list (2-tuple of float)] Bounds for parameters to use in estimation.

Return type List[Tuple[float, float]]

arch.univariate.base.ARCHModel.compute_param_cov

ARCHModel.compute_param_cov (self, params: numpy.ndarray, backcast: Union[float, None- Type] = None, robust: bool = True) → numpy.ndarray

Computes parameter covariances using numerical derivatives.

Parameters

- `params` [ndarray] Model parameters
- `backcast` [float] Value to use for pre-sample observations
- `robust` [bool, optional] Flag indicating whether to use robust standard errors (True) or classic MLE (False)
Return type ndarray

arch.univariate.base.ARCHModel.constraints

ARCHModel.constraints(self) → Tuple[numpy.ndarray, numpy.ndarray]

Construct linear constraint arrays for use in non-linear optimization

Returns

a [ndarray] Number of constraints by number of parameters loading array
b [ndarray] Number of constraints array of lower bounds

Notes

Parameters satisfy a.dot(parameters) - b >= 0

Return type Tuple[ndarray, ndarray]

arch.univariate.base.ARCHModel.fit


Fits the model given a nobs by 1 vector of sigma2 values

Parameters

update_freq [int, optional] Frequency of iteration updates. Output is generated every update_freq iterations. Set to 0 to disable iterative output.
disp [str] Either ‘final’ to print optimization result or ‘off’ to display nothing
starting_values [ndarray, optional] Array of starting values to use. If not provided, starting values are constructed by the model components.
cov_type [str, optional] Estimation method of parameter covariance. Supported options are ‘robust’, which does not assume the Information Matrix Equality holds and ‘classic’ which does. In the ARCH literature, ‘robust’ corresponds to Bollerslev-Wooldridge covariance estimator.
show_warning [bool, optional] Flag indicating whether convergence warnings should be shown.
first_obs [(int, str, datetime, Timestamp)] First observation to use when estimating model
last_obs [(int, str, datetime, Timestamp)] Last observation to use when estimating model
tol [float, optional] Tolerance for termination.
backcast [float, optional] Value to use as backcast. Should be measure \( \sigma^2 \) since model-specific non-linear transformations are applied to value before computing the variance recursions.

Returns

results [ARCHModelResult] Object containing model results

Notes

A ConvergenceWarning is raised if SciPy’s optimizer indicates difficulty finding the optimum.

Parameters are optimized using SLSQP.

Return type ARCHModelResult

arch.univariate.base.ARCHModel.fix

ARCHModel.fix(self, params: Union[Sequence[float], numpy.ndarray, pandas.core.series.Series], first_obs: Union[int, str, datetime.datetime, numpy.datetime64, pandas._libs.tslibs.timestamps.Timestamp] = None, last_obs: Union[int, str, datetime.datetime, numpy.datetime64, pandas._libs.tslibs.timestamps.Timestamp] = None) \rightarrow 'ARCHModelFixedResult'

Allows an ARCHModelFixedResult to be constructed from fixed parameters.

Parameters

params [[ndarray, Series]] User specified parameters to use when generating the result. Must have the correct number of parameters for a given choice of mean model, volatility model and distribution.

first_obs [[int, str, datetime, Timestamp]] First observation to use when fixing model

last_obs [[int, str, datetime, Timestamp]] Last observation to use when fixing model

Returns

results [ARCHModelFixedResult] Object containing model results

Notes

Parameters are not checked against model-specific constraints.

Return type ARCHModelFixedResult

arch.univariate.base.ARCHModel.forecast

ARCHModel.forecast(self, params: numpy.ndarray, horizon: int = 1, start: Union[int, str, datetime.datetime, numpy.datetime64, pandas._libs.tslibs.timestamps.Timestamp] = None, align: str = 'origin', method: str = 'analytic', simulations: int = 1000, rng: Union[Callable[[Union[int, Tuple[int, ...]]], numpy.ndarray], NoneType] = None, random_state: numpy.random.mtrand.RandomState = None) \rightarrow 'ARCHModelForecast'

Construct forecasts from estimated model

Parameters
**params** [[ndarray, Series], optional] Alternative parameters to use. If not provided, the parameters estimated when fitting the model are used. Must be identical in shape to the parameters computed by fitting the model.

**horizon** [int, optional] Number of steps to forecast

**start** [[int, datetime, Timestamp, str], optional] An integer, datetime or str indicating the first observation to produce the forecast for. Datetimes can only be used with pandas inputs that have a datetime index. Strings must be convertible to a date time, such as in ‘1945-01-01’.

**align** [str, optional] Either ‘origin’ or ‘target’. When set of ‘origin’, the t-th row of forecasts contains the forecasts for t+1, t+2, ..., t+h. When set to ‘target’, the t-th row contains the 1-step ahead forecast from time t+1, the 2 step from time t+2, ..., and the h-step from time t+h. ‘target’ simplified computing forecast errors since the realization and h-step forecast are aligned.

**method** [{‘analytic’, ‘simulation’, ‘bootstrap’}] Method to use when producing the forecast. The default is analytic. The method only affects the variance forecast generation. Not all volatility models support all methods. In particular, volatility models that do not evolve in squares such as EGARCH or TARCH do not support the ‘analytic’ method for horizons > 1.

**simulations** [int] Number of simulations to run when computing the forecast using either simulation or bootstrap.

**rng** [callable, optional] Custom random number generator to use in simulation-based forecasts. Must produce random samples using the syntax rng(size) where size the 2-element tuple (simulations, horizon).

**random_state** [RandomState, optional] NumPy RandomState instance to use when method is ‘bootstrap’

**Returns**

**forecasts** [ARCHModelForecast] t by h data frame containing the forecasts. The alignment of the forecasts is controlled by **align**.

**Notes**

The most basic 1-step ahead forecast will return a vector with the same length as the original data, where the t-th value will be the time-t forecast for time t+1. When the horizon is > 1, and when using the default value for **align**, the forecast value in position [t, h] is the time-t, h+1 step ahead forecast.

If model contains exogenous variables (model.x is not None), then only 1-step ahead forecasts are available. Using horizon > 1 will produce a warning and all columns, except the first, will be nan-filled.

If **align** is ‘origin’, forecast[t,h] contains the forecast made using y[:t] (that is, up to but not including t) for horizon h + 1. For example, y[100,2] contains the 3-step ahead forecast using the first 100 data points, which will correspond to the realization y[100 + 2]. If **align** is ‘target’, then the same forecast is in location [102, 2], so that it is aligned with the observation to use when evaluating, but still in the same column.

**Examples**

```python
>>> import pandas as pd
>>> from arch import arch_model
>>> am = arch_model(None, mean='HAR', lags=[1, 5, 22], vol='Constant')
```

(continues on next page)
>>> sim_data = am.simulate([0.1, 0.4, 0.3, 0.2, 1.0], 250)
>>> sim_data.index = pd.date_range('2000-01-01', periods=250)
>>> am = arch_model(sim_data['data'], mean='HAR', lags=[1, 5, 22], vol='Constant')
>>> res = am.fit()
>>> fig = res.hedgehog_plot()

Return type `ARCHModelForecast`

`arch.univariate.base.ARCHModel.parameter_names`

`ARCHModel.parameter_names(self) → List[str]`
List of parameters names

Returns

names [list (str)] List of variable names for the mean model

Return type `List[str]`

`arch.univariate.base.ARCHModel.resids`

`ARCHModel.resids(self, params: numpy.ndarray, y: Union[numpy.ndarray, NoneType] = None, regressors: Union[numpy.ndarray, NoneType] = None) → numpy.ndarray`
Compute model residuals

Parameters

params [ndarray] Model parameters

y [ndarray, optional] Alternative values to use when computing model residuals

regressors [ndarray, optional] Alternative regressor values to use when computing model residuals

Returns

resids [ndarray] Model residuals

Return type `ndarray`

`arch.univariate.base.ARCHModel.simulate`

`ARCHModel.simulate(self, params: Union[numpy.ndarray, pandas.core.series.Series], nobs: int, burn: int = 500, initial_value: Union[float, NoneType] = None, x: Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series, NoneType] = None, initial_value_vol: Union[float, NoneType] = None) → pandas.core.frame.DataFrame`

Return type `DataFrame`
### arch.univariate.base.ARCHModel.starting_values

**ARCHModel.starting_values** *(self) → numpy.ndarray*

Returns starting values for the mean model, often the same as the values returned from `fit`

- **Returns**
  - `sv` *[ndarray]* Starting values

- **Return type** `ndarray`

### Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>distribution</code></td>
<td>Set or gets the error distribution</td>
</tr>
<tr>
<td><code>name</code></td>
<td>The name of the model.</td>
</tr>
<tr>
<td><code>num_params</code></td>
<td>Number of parameters in the model</td>
</tr>
<tr>
<td><code>volatility</code></td>
<td>Set or gets the volatility process</td>
</tr>
<tr>
<td><code>y</code></td>
<td>Returns the dependent variable</td>
</tr>
</tbody>
</table>

### arch.univariate.base.ARCHModel.distribution

**ARCHModel.distribution**

Set or gets the error distribution

- **Return type** `Distribution`

### arch.univariate.base.ARCHModel.name

**ARCHModel.name**

The name of the model.

- **Return type** `str`

### arch.univariate.base.ARCHModel.num_params

**ARCHModel.num_params**

Number of parameters in the model

### arch.univariate.base.ARCHModel.volatility

**ARCHModel.volatility**

Set or gets the volatility process

Volatility processes must be a subclass of `VolatilityProcess`

- **Return type** `VolatilityProcess`
**arch.univariate.base.ARCHModel.y**

ARCHModel.y

Returns the dependent variable

**Return type** Union[ndarray, DataFrame, Series, None]

### 1.8 Volatility Processes

A volatility process is added to a mean model to capture time-varying volatility.

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ConstantVariance()</td>
<td>Constant volatility process</td>
</tr>
<tr>
<td>GARCH([p, q, power])</td>
<td>GARCH and related model estimation</td>
</tr>
<tr>
<td>FIGARCH([p, q, power, truncation])</td>
<td>FIGARCH model</td>
</tr>
<tr>
<td>EGARCH([p, q])</td>
<td>EGARCH model estimation</td>
</tr>
<tr>
<td>HARCH([lags])</td>
<td>Heterogeneous ARCH process</td>
</tr>
<tr>
<td>MIDASHyperbolic([m, asym])</td>
<td>MIDAS Hyperbolic ARCH process</td>
</tr>
<tr>
<td>ARCH([p])</td>
<td>ARCH process</td>
</tr>
</tbody>
</table>

### 1.8.1 arch.univariate.ConstantVariance

**class arch.univariate.ConstantVariance**

Constant volatility process

**Notes**

Model has the same variance in all periods

**Methods**

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>backcast(self, resids)</td>
<td>Construct values for backcasting to start the recursion</td>
</tr>
<tr>
<td>backcast_transform(self, backcast)</td>
<td>Transformation to apply to user-provided backcast values</td>
</tr>
<tr>
<td>bounds(self, resids)</td>
<td>Returns bounds for parameters</td>
</tr>
<tr>
<td>compute_variance(self, parameters, resids, ...)</td>
<td>Compute the variance for the ARCH model</td>
</tr>
<tr>
<td>constraints(self)</td>
<td>Construct parameter constraints arrays for parameter estimation</td>
</tr>
<tr>
<td>forecast(self, parameters, ...)</td>
<td>Forecast volatility from the model</td>
</tr>
<tr>
<td>parameter_names(self)</td>
<td>Names of model parameters</td>
</tr>
<tr>
<td>simulate(self, parameters, float[], ...)</td>
<td>Simulate data from the model</td>
</tr>
<tr>
<td>starting_values(self, resids)</td>
<td>Returns starting values for the ARCH model</td>
</tr>
<tr>
<td>variance_bounds(self, resids, power)</td>
<td>Construct loose bounds for conditional variances.</td>
</tr>
</tbody>
</table>
**arch.univariate.ConstantVariance.backcast**

`ConstantVariance.backcast(self, resids: numpy.ndarray) → float`

Construct values for backcasting to start the recursion

**Parameters**
- `resids` [ndarray] Vector of (approximate) residuals

**Returns**
- `backcast` [float] Value to use in backcasting in the volatility recursion

**Return type** float

**arch.univariate.ConstantVariance.backcast_transform**

`ConstantVariance.backcast_transform(self, backcast: ~FloatOrArray) → ~FloatOrArray`

Transformation to apply to user-provided backcast values

**Parameters**
- `backcast` [{float, ndarray}] User-provided backcast that approximates sigma2[0].

**Returns**
- `backcast` [{float, ndarray}] Backcast transformed to the model-appropriate scale

**Return type** ~FloatOrArray

**arch.univariate.ConstantVariance.bounds**

`ConstantVariance.bounds(self, resids: numpy.ndarray) → List[Tuple[float, float]]`

Returns bounds for parameters

**Parameters**
- `resids` [ndarray] Vector of (approximate) residuals

**Returns**
- `bounds` [list[tuple[float, float]]] List of bounds where each element is (lower, upper).

**Return type** List[Tuple[float, float]]

**arch.univariate.ConstantVariance.compute_variance**

`ConstantVariance.compute_variance(self, parameters: numpy.ndarray, resids: numpy.ndarray, sigma2: numpy.ndarray, backcast: Union[float, numpy.ndarray], var_bounds: numpy.ndarray) → numpy.ndarray`

Compute the variance for the ARCH model

**Parameters**
- `parameters` [ndarray] Model parameters
- `resids` [ndarray] Vector of mean zero residuals
- `sigma2` [ndarray] Array with same size as resids to store the conditional variance

backcast  [[float, ndarray]] Value to use when initializing ARCH recursion. Can be an
ndarray when the model contains multiple components.

var_bounds  [ndarray] Array containing columns of lower and upper bounds

Return type  ndarray

arch.univariate.ConstantVariance.constraints

ConstantVariance.constraints(self) → Tuple[numpy.ndarray, numpy.ndarray]
Construct parameter constraints arrays for parameter estimation

Returns

A  [ndarray] Parameters loadings in constraint. Shape is number of constraints by number of
parameters

b  [ndarray] Constraint values, one for each constraint

Notes

Values returned are used in constructing linear inequality constraints of the form A.dot(parameters) - b >=
0

Return type  Tuple[numpy.ndarray, numpy.ndarray]

arch.univariate.ConstantVariance.forecast


Forecast volatility from the model

Parameters

parameters  [[ndarray, Series]] Parameters required to forecast the volatility model

resids  [ndarray] Residuals to use in the recursion

backcast  [float] Value to use when initializing the recursion

var_bounds  [ndarray, 2-d] Array containing columns of lower and upper bounds

start  [[None, int]] Index of the first observation to use as the starting point for the forecast.
Default is len(resids).

horizon  [int] Forecast horizon. Must be 1 or larger. Forecasts are produced for horizons in
[1, horizon].

method  [[‘analytic’, ‘simulation’, ‘bootstrap’]] Method to use when producing the forecast.
The default is analytic.

simulations  [int] Number of simulations to run when computing the forecast using either
simulation or bootstrap.
rng [callable] Callable random number generator required if method is ‘simulation’. Must take a single shape input and return random samples numbers with that shape.

random_state [RandomState, optional] NumPy RandomState instance to use when method is ‘bootstrap’

Returns

forecasts [VarianceForecast] Class containing the variance forecasts, and, if using simulation or bootstrap, the simulated paths.

Raises

NotImplementedError
• If method is not supported

ValueError
• If the method is not known

Notes

The analytic method is not supported for all models. Attempting to use this method when not available will raise a ValueError.

Return type VarianceForecast

arch.univariate.ConstantVariance.parameter_names

ConstantVariance.parameter_names(self) \rightarrow List[str]

Names of model parameters

Returns

names [list (str)] Variables names

Return type List[str]

arch.univariate.ConstantVariance.simulate

ConstantVariance.simulate(self, parameters: Union[Sequence[Union[int, float]], numpy.ndarray, pandas.core.series.Series], nobs: int, rng: Callable[[Union[int, Tuple[int, ...]]], numpy.ndarray], burn: int = 500, initial_value: Union[float, NoneType] = None) \rightarrow Tuple[numpy.ndarray, numpy.ndarray]

Simulate data from the model

Parameters

parameters [(ndarray, Series)] Parameters required to simulate the volatility model

nobs [int] Number of data points to simulate

rng [callable] Callable function that takes a single integer input and returns a vector of random numbers

burn [int, optional] Number of additional observations to generate when initializing the simulation
arch Documentation, Release 4.13+2.gccbb460e

initial_value  [[float, ndarray], optional] Scalar or array of initial values to use when initializing the simulation

Returns

resids  [ndarray] The simulated residuals

variance  [ndarray] The simulated variance

Return type  Tuple[ndarray, ndarray]

arch.univariate.ConstantVariance.starting_values

ConstantVariance.starting_values(self, resids: numpy.ndarray) → numpy.ndarray

Returns starting values for the ARCH model

Parameters

resids  [ndarray] Array of (approximate) residuals to use when computing starting values

Returns

sv  [ndarray] Array of starting values

Return type  ndarray

arch.univariate.ConstantVariance.variance_bounds

ConstantVariance.variance_bounds(self, resids: numpy.ndarray, power: float = 2.0) → numpy.ndarray

Construct loose bounds for conditional variances.

These bounds are used in parameter estiamtn to ensure that the log-likelihood does not produce NaN values.

Parameters

resids  [ndarray] Approximate residuals to use to compute the lower and upper bounds on the conditional variance

power  [float, optional] Power used in the model. 2.0, the default corresponds to standard ARCH models that evolve in squares.

Returns

var_bounds  [ndarray] Array containing columns of lower and upper bounds with the same number of elements as resids

Return type  ndarray

Properties

<table>
<thead>
<tr>
<th>name</th>
<th>The name of the volatility process</th>
</tr>
</thead>
<tbody>
<tr>
<td>start</td>
<td>Index to use to start variance subarray selection</td>
</tr>
<tr>
<td>stop</td>
<td>Index to use to stop variance subarray selection</td>
</tr>
</tbody>
</table>

1.8. Volatility Processes 87
arch.univariate.ConstantVariance.name

ConstantVariance.name
The name of the volatility process

    Return type str

arch.univariate.ConstantVariance.start

ConstantVariance.start
Index to use to start variance subarray selection

    Return type int

arch.univariate.ConstantVariance.stop

ConstantVariance.stop
Index to use to stop variance subarray selection

    Return type int

1.8.2 arch.univariate.GARCH

class arch.univariate.GARCH (p=1, o=0, q=1, power=2.0)
GARCH and related model estimation

The following models can be specified using GARCH:

• ARCH(p)
• GARCH(p,q)
• GJR-GARCH(p,o,q)
• AVARCH(p)
• AVGARCH(p,q)
• TARCH(p,o,q)
• Models with arbitrary, pre-specified powers

Parameters

    p [int] Order of the symmetric innovation
    o [int] Order of the asymmetric innovation
    q [int] Order of the lagged (transformed) conditional variance
    power [float, optional] Power to use with the innovations, \( \text{abs}(e)^{\text{power}} \). Default is 2.0, which produces ARCH and related models. Using 1.0 produces AVARCH and related models. Other powers can be specified, although these should be strictly positive, and usually larger than 0.25.
Notes

In this class of processes, the variance dynamics are

$$\sigma_t^\lambda = \omega + \sum_{i=1}^p \alpha_i |\epsilon_{t-i}|^\lambda + \sum_{j=1}^o \gamma_j |\epsilon_{t-j}|^\lambda I[\epsilon_{t-j} < 0] + \sum_{k=1}^q \beta_k \sigma_{t-k}^\lambda$$

Examples

```python
>>> from arch.univariate import GARCH

Standard GARCH(1,1)

>>> garch = GARCH(p=1, q=1)

Asymmetric GJR-GARCH process

>>> gjr = GARCH(p=1, o=1, q=1)

Asymmetric TARCH process

>>> tarch = GARCH(p=1, o=1, q=1, power=1.0)
```

Attributes

- `num_params` [int] The number of parameters in the model

Methods

- `backcast(self, resids)` Construct values for backcasting to start the recursion
- `backcast_transform(self, backcast)` Transformation to apply to user-provided backcast values
- `bounds(self, resids)` Returns bounds for parameters
- `compute_variance(self, parameters, resids, ...)` Compute the variance for the ARCH model
- `constraints(self)` Construct parameter constraints arrays for parameter estimation
- `forecast(self, parameters, ...)` Forecast volatility from the model
- `parameter_names(self)` Names of model parameters
- `simulate(self, parameters, float[]|...)` Simulate data from the model
- `starting_values(self, resids)` Returns starting values for the ARCH model
- `variance_bounds(self, resids, power)` Construct loose bounds for conditional variances.
arch.univariate.GARCH.backcast_transform

GARCH.backcast_transform(self, backcast: ~FloatOrArray) → ~FloatOrArray
Transformation to apply to user-provided backcast values

Parameters
backcast [{float, ndarray}] User-provided backcast that approximates sigma2[0].

Returns
backcast [{float, ndarray}] Backcast transformed to the model-appropriate scale

Return type ~FloatOrArray

arch.univariate.GARCH.bounds

GARCH.bounds(self, resids: numpy.ndarray) → List[Tuple[float, float]]
Returns bounds for parameters

Parameters
resids [ndarray] Vector of (approximate) residuals

Returns
bounds [list[tuple[float, float]]] List of bounds where each element is (lower, upper).

Return type List[Tuple[float, float]]

arch.univariate.GARCH.compute_variance

GARCH.compute_variance(self, parameters: numpy.ndarray, resids: numpy.ndarray, sigma2: numpy.ndarray, backcast: Union[float, numpy.ndarray], var_bounds: numpy.ndarray) → numpy.ndarray
Compute the variance for the ARCH model

Parameters
parameters [ndarray] Model parameters
resids [ndarray] Vector of mean zero residuals
sigma2 [ndarray] Array with same size as resids to store the conditional variance
backcast [{float, ndarray}] Value to use when initializing ARCH recursion. Can be an ndarray when the model contains multiple components.
var_bounds [ndarray] Array containing columns of lower and upper bounds

Return type ndarray
arch.univariate.GARCH.constraints

GARCH.constraints(self) → Tuple[numpy.ndarray, numpy.ndarray]

Construct parameter constraints arrays for parameter estimation

Returns

A [ndarray] Parameters loadings in constraint. Shape is number of constraints by number of parameters

b [ndarray] Constraint values, one for each constraint

Notes

Values returned are used in constructing linear inequality constraints of the form A.dot(parameters) - b >= 0

Return type Tuple[ndarray, ndarray]

arch.univariate.GARCH.forecast


Forecast volatility from the model

Parameters

parameters [[ndarray, Series]] Parameters required to forecast the volatility model
resids [ndarray] Residuals to use in the recursion
backcast [float] Value to use when initializing the recursion
var_bounds [ndarray, 2-d] Array containing columns of lower and upper bounds
start [[None, int]] Index of the first observation to use as the starting point for the forecast. Default is len(resids).
horizon [int] Forecast horizon. Must be 1 or larger. Forecasts are produced for horizons in [1, horizon].
method [['analytic', 'simulation', 'bootstrap']] Method to use when producing the forecast. The default is analytic.
simulations [int] Number of simulations to run when computing the forecast using either simulation or bootstrap.
rng [callable] Callable random number generator required if method is 'simulation'. Must take a single shape input and return random samples numbers with that shape.
random_state [RandomState, optional] NumPy RandomState instance to use when method is 'bootstrap'

Returns
forecasts [VarianceForecast] Class containing the variance forecasts, and, if using simulation or bootstrap, the simulated paths.

Raises

- **NotImplementedError**
  - If method is not supported
- **ValueError**
  - If the method is not known

Notes

The analytic method is not supported for all models. Attempting to use this method when not available will raise a ValueError.

Return type VarianceForecast

arch.univariate.GARCH.parameter_names

GARCH.parameter_names(self) → List[str]
Names of model parameters

Returns

names [list (str)] Variables names

Return type List[str]

arch.univariate.GARCH.simulate

GARCH.simulate(self, parameters: Union[Sequence[Union[int, float]], numpy.ndarray, pandas.core.series.Series], nobs: int, rng: Callable[[Union[int, Tuple[int, ...]]], numpy.ndarray], burn: int = 500, initial_value: Union[float, NoneType] = None) → Tuple[numpy.ndarray, numpy.ndarray]
Simulate data from the model

Parameters

- **parameters** [[ndarray, Series]] Parameters required to simulate the volatility model
- **nobs** [int] Number of data points to simulate
- **rng** [callable] Callable function that takes a single integer input and returns a vector of random numbers
- **burn** [int, optional] Number of additional observations to generate when initializing the simulation
- **initial_value** [[float, ndarray], optional] Scalar or array of initial values to use when initializing the simulation

Returns

- **resids** [ndarray] The simulated residuals
- **variance** [ndarray] The simulated variance

Return type Tuple[ndarray, ndarray]
arch.univariate.GARCH.starting_values

GARCH.starting_values(self, resids: numpy.ndarray) \rightarrow numpy.ndarray
Returns starting values for the ARCH model

Parameters
resids [ndarray] Array of (approximate) residuals to use when computing starting values

Returns
sv [ndarray] Array of starting values

Return type ndarray

arch.univariate.GARCH.variance_bounds

GARCH.variance_bounds(self, resids: numpy.ndarray, power: float = 2.0) \rightarrow numpy.ndarray
Construct loose bounds for conditional variances.
These bounds are used in parameter estimation to ensure that the log-likelihood does not produce NaN values.

Parameters
resids [ndarray] Approximate residuals to use to compute the lower and upper bounds on the conditional variance
power [float, optional] Power used in the model. 2.0, the default corresponds to standard ARCH models that evolve in squares.

Returns
var_bounds [ndarray] Array containing columns of lower and upper bounds with the same number of elements as resids

Return type ndarray

Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>The name of the volatility process</td>
</tr>
<tr>
<td>start</td>
<td>Index to use to start variance subarray selection</td>
</tr>
<tr>
<td>stop</td>
<td>Index to use to stop variance subarray selection</td>
</tr>
</tbody>
</table>

arch.univariate.GARCH.name

GARCH.name
The name of the volatility process

Return type str

arch.univariate.GARCH.start

GARCH.start
Index to use to start variance subarray selection

Return type int
**arch Documentation, Release 4.13+2.gccbb460e**

`arch.univariate.GARCH.stop`

*GARCH . stop*

Index to use to stop variance subarray selection

**Return type** `int`

### 1.8.3 arch.univariate.FIGARCH

**class** `arch.univariate.FIGARCH (p=1, q=1, power=2.0, truncation=1000)`

FIGARCH model

**Parameters**

- `p` [{0, 1}] Order of the symmetric innovation
- `q` [{0, 1}] Order of the lagged (transformed) conditional variance
- `power` [float, optional] Power to use with the innovations, abs(e) ** power. Default is 2.0, which produces FIGARCH and related models. Using 1.0 produces FIAVARCH and related models. Other powers can be specified, although these should be strictly positive, and usually larger than 0.25.
- `truncation` [int, optional] Truncation point to use in ARCH(∞) representation. Default is 1000.

**Notes**

In this class of processes, the variance dynamics are

\[ h_t = \omega + [1 - \beta L - \phi L(1 - L)^d]e_t^2 + \beta h_{t-1} \]

where \( L \) is the lag operator and \( d \) is the fractional differencing parameter. The model is estimated using the ARCH(∞) representation,

\[ h_t = (1 - \beta)^{-1} \omega + \sum_{i=1}^{\infty} \lambda_i e_{t-i}^2 \]

The weights are constructed using

\[ \delta_1 = d \]
\[ \lambda_1 = d - \beta + \phi \]

and the recursive equations

\[ \delta_j = \frac{j - 1 - d}{j} \delta_{j-1} \]
\[ \lambda_j = \beta \lambda_{j-1} + \delta_j - \phi \delta_{j-1} \]

When `power` is not 2, the ARCH(∞) representation is still used where \( e_t^2 \) is replaced by \( |e_t|^p \) and \( p \) is the power.

**Examples**

```python
>>> from arch.univariate import FIGARCH
```

Standard FIGARCH

---

94 Chapter 1. Univariate Volatility Models
>>> figarch = FIGARCH()

FIARCH

>>> fiarch = FIGARCH(p=0)

FIAVGARCH process

>>> fiavarch = FIGARCH(power=1.0)

Attributes

- `num_params` [int] The number of parameters in the model

Methods

- `backcast(self, resids)` Construct values for backcasting to start the recursion
- `backcast_transform(self, backcast)` Transformation to apply to user-provided backcast values
- `bounds(self, resids)` Returns bounds for parameters
- `compute_variance(self, parameters, resids, ...)` Compute the variance for the ARCH model
- `constraints(self)` Construct parameter constraints arrays for parameter estimation
- `forecast(self, parameters, ...)` Forecast volatility from the model
- `parameter_names(self)` Names of model parameters
- `simulate(self, parameters, float[, ...])` Simulate data from the model
- `starting_values(self, resids)` Returns starting values for the ARCH model
- `variance_bounds(self, resids, power)` Construct loose bounds for conditional variances.

**arch.univariate.FIGARCH.backcast**

`FIGARCH.backcast(self, resids: numpy.ndarray) → float`

Construct values for backcasting to start the recursion

**Parameters**

- `resids` [ndarray] Vector of (approximate) residuals

**Returns**

- `backcast` [float] Value to use in backcasting in the volatility recursion

**Return type** `float`

**arch.univariate.FIGARCH.backcast_transform**

`FIGARCH.backcast_transform(self, backcast: ~FloatOrArray) → ~FloatOrArray`

Transformation to apply to user-provided backcast values

**Parameters**

- `backcast` [[float, ndarray]] User-provided `backcast` that approximates sigma2[0].
Returns

backcast \([\{\text{float, ndarray}\}]\) Backcast transformed to the model-appropriate scale

Return type \(\sim\text{FloatOrArray}\)

**arch.univariate.FIGARCH.bounds**

FIGARCH.bounds \((self, \text{resids: numpy.ndarray})\) \(\rightarrow\) List[Tuple[float, float]]

Returns bounds for parameters

Parameters

resids [ndarray] Vector of (approximate) residuals

Returns

bounds [list[tuple[float, float]]] List of bounds where each element is (lower, upper).

Return type List[Tuple[float, float]]

**arch.univariate.FIGARCH.compute_variance**

FIGARCH.compute_variance \((self, \text{parameters: numpy.ndarray, resids: numpy.ndarray,\sigma2: numpy.ndarray, backcast: Union[float, numpy.ndarray], var_bounds: numpy.ndarray})\) \(\rightarrow\) numpy.ndarray

Compute the variance for the ARCH model

Parameters

parameters [ndarray] Model parameters

resids [ndarray] Vector of mean zero residuals

sigma2 [ndarray] Array with same size as resids to store the conditional variance

backcast \([\{\text{float, ndarray}\}]\) Value to use when initializing ARCH recursion. Can be an ndarray when the model contains multiple components.

var_bounds [ndarray] Array containing columns of lower and upper bounds

Return type ndarray

**arch.univariate.FIGARCH.constraints**

FIGARCH.constraints \((self)\) \(\rightarrow\) Tuple[numpy.ndarray, numpy.ndarray]

Construct parameter constraints arrays for parameter estimation

Returns

A [ndarray] Parameters loadings in constraint. Shape is number of constraints by number of parameters

b [ndarray] Constraint values, one for each constraint
Notes

Values returned are used in constructing linear inequality constraints of the form A.dot(parameters) - b >= 0

**Return type** `Tuple[ndarray, ndarray]`

---

**arch.univariate.FIGARCH.forecast**


Forecast volatility from the model

**Parameters**

- **parameters** `[(ndarray, Series)]` Parameters required to forecast the volatility model
- **resids** `ndarray` Residuals to use in the recursion
- **backcast** `float` Value to use when initializing the recursion
- **var_bounds** `ndarray, 2-d` Array containing columns of lower and upper bounds
- **start** `[(None, int)]` Index of the first observation to use as the starting point for the forecast. Default is len(resids).
- **horizon** `int` Forecast horizon. Must be 1 or larger. Forecasts are produced for horizons in [1, horizon].
- **method** `{'analytic', 'simulation', 'bootstrap'}` Method to use when producing the forecast. The default is analytic.
- **simulations** `int` Number of simulations to run when computing the forecast using either simulation or bootstrap.
- **rng** `callable` Callable random number generator required if method is ‘simulation’. Must take a single shape input and return random samples numbers with that shape.
- **random_state** `[RandomState, optional]` NumPy RandomState instance to use when method is ‘bootstrap’

**Returns**

- **forecasts** `[VarianceForecast]` Class containing the variance forecasts, and, if using simulation or bootstrap, the simulated paths.

**Raises**

- **NotImplementedError**
  - If method is not supported
- **ValueError**
  - If the method is not known

---

1.8. Volatility Processes
Notes

The analytic method is not supported for all models. Attempting to use this method when not available will raise a ValueError.

Return type VarianceForecast

arch.univariate.FIGARCH.parameter_names

FIGARCH.parameter_names(self) → List[str]
Names of model parameters

Returns

names [list (str)] Variables names

Return type List[str]

arch.univariate.FIGARCH.simulate

FIGARCH.simulate(self, parameters: Union[Sequence[Union[int, float]], numpy.ndarray, pandas.core.series.Series], nobs: int, rng: Callable[[Union[int, Tuple[int, ...]]], numpy.ndarray], burn: int = 500, initial_value: Union[float, NoneType] = None) → Tuple[numpy.ndarray, numpy.ndarray]
Simulate data from the model

Parameters

parameters [[ndarray, Series]] Parameters required to simulate the volatility model
nobs [int] Number of data points to simulate
rng [callable] Callable function that takes a single integer input and returns a vector of random numbers
burn [int, optional] Number of additional observations to generate when initializing the simulation
initial_value [[float, ndarray], optional] Scalar or array of initial values to use when initializing the simulation

Returns

resids [ndarray] The simulated residuals
variance [ndarray] The simulated variance

Return type Tuple[ndarray, ndarray]

arch.univariate.FIGARCH.starting_values

FIGARCH.starting_values(self, resids: numpy.ndarray) → numpy.ndarray
Returns starting values for the ARCH model

Parameters

resids [ndarray] Array of (approximate) residuals to use when computing starting values

Returns
sv [ndarray] Array of starting values

**Return type** ndarray

**arch.univariate.FIGARCH.variance_bounds**

FIGARCH.variance_bounds(self, resids: numpy.ndarray, power: float = 2.0) → numpy.ndarray

Construct loose bounds for conditional variances.

These bounds are used in parameter estimation to ensure that the log-likelihood does not produce NaN values.

**Parameters**

- **resids** [ndarray] Approximate residuals to use to compute the lower and upper bounds on the conditional variance
- **power** [float, optional] Power used in the model. 2.0, the default corresponds to standard ARCH models that evolve in squares.

**Returns**

- **var_bounds** [ndarray] Array containing columns of lower and upper bounds with the same number of elements as resids

**Return type** ndarray

**Properties**

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>name</strong></td>
<td>The name of the volatility process</td>
</tr>
<tr>
<td><strong>start</strong></td>
<td>Index to use to start variance subarray selection</td>
</tr>
<tr>
<td><strong>stop</strong></td>
<td>Index to use to stop variance subarray selection</td>
</tr>
<tr>
<td><strong>truncation</strong></td>
<td>Truncation lag for the ARCH-infinity approximation</td>
</tr>
</tbody>
</table>

**arch.univariate.FIGARCH.name**

FIGARCH.name

The name of the volatility process

**Return type** str

**arch.univariate.FIGARCH.start**

FIGARCH.start

Index to use to start variance subarray selection

**Return type** int

**arch.univariate.FIGARCH.stop**

FIGARCH.stop

Index to use to stop variance subarray selection

**Return type** int
arch Documentation, Release 4.13+2.gccbb460e

arch.univariate.FIGARCH.truncation

FIGARCH.truncation
Truncation lag for the ARCH-infinity approximation

Return type int

1.8.4 arch.univariate.EGARCH

class arch.univariate.EGARCH (p=1, o=0, q=1)
EGARCH model estimation

Parameters

p [int] Order of the symmetric innovation
o [int] Order of the asymmetric innovation
q [int] Order of the lagged (transformed) conditional variance

Notes

In this class of processes, the variance dynamics are

\[
\ln \sigma_t^2 = \omega + \sum_{i=1}^{p} \alpha_i \left( |e_{t-i}| - \sqrt{2/\pi} \right) + \sum_{j=1}^{o} \gamma_j e_{t-j} + \sum_{k=1}^{q} \beta_k \ln \sigma_{t-k}^2
\]

where \( e_t = \epsilon_t / \sigma_t \).

Examples

```python
>>> from arch.univariate import EGARCH

Symmetric EGARCH(1,1)
>>> egarch = EGARCH(p=1, q=1)

Standard EGARCH process
>>> egarch = EGARCH(p=1, o=1, q=1)

Exponential ARCH process
>>> earch = EGARCH(p=5)
```

Attributes

- num_params [int] The number of parameters in the model

Methods
backcast(self, resids)  Construct values for backcasting to start the recursion
backcast_transform(self, backcast)  Transformation to apply to user-provided backcast values
bounds(self, resids)  Returns bounds for parameters
compute_variance(self, parameters, resids, ...)  Compute the variance for the ARCH model
constraints(self)  Construct parameter constraints arrays for parameter estimation
forecast(self, parameters, ...)  Forecast volatility from the model
parameter_names(self)  Names of model parameters
simulate(self, parameters, float], ...)  Simulate data from the model
starting_values(self, resids)  Returns starting values for the ARCH model
variance_bounds(self, resids, power)  Construct loose bounds for conditional variances.

arch.univariate.EGARCH.backcast

EGARCH.backcast (self, resids: numpy.ndarray) \rightarrow float
Construct values for backcasting to start the recursion

Parameters
resids [ndarray] Vector of (approximate) residuals

Returns
backcast [float] Value to use in backcasting in the volatility recursion

Return type float

arch.univariate.EGARCH.backcast_transform

EGARCH.backcast_transform (self, backcast: ~FloatOrArray) \rightarrow ~FloatOrArray
Transformation to apply to user-provided backcast values

Parameters
backcast [[float, ndarray]] User-provided backcast that approximates sigma2[0].

Returns
backcast [[float, ndarray]] Backcast transformed to the model-appropriate scale

Return type ~FloatOrArray

arch.univariate.EGARCH.bounds

EGARCH.bounds (self, resids: numpy.ndarray) \rightarrow List[Tuple[float, float]]
Returns bounds for parameters

Parameters
resids [ndarray] Vector of (approximate) residuals

Returns
bounds [list[tuple[float,float]]] List of bounds where each element is (lower, upper).
Return type List[Tuple[float, float]]

arch.univariate.EGARCH.compute_variance

EGARCH.compute_variance(self, parameters: numpy.ndarray, resids: numpy.ndarray, sigma2: numpy.ndarray, backcast: Union[float, numpy.ndarray], var_bounds: numpy.ndarray) → numpy.ndarray

Compute the variance for the ARCH model

Parameters

parameters [ndarray] Model parameters
resids [ndarray] Vector of mean zero residuals
sigma2 [ndarray] Array with same size as resids to store the conditional variance
backcast [{float, ndarray}] Value to use when initializing ARCH recursion. Can be an ndarray when the model contains multiple components.
var_bounds [ndarray] Array containing columns of lower and upper bounds

Return type ndarray

arch.univariate.EGARCH.constraints

EGARCH.constraints(self) → Tuple[numpy.ndarray, numpy.ndarray]

Construct parameter constraints arrays for parameter estimation

Returns

A [ndarray] Parameters loadings in constraint. Shape is number of constraints by number of parameters
b [ndarray] Constraint values, one for each constraint

Notes

Values returned are used in constructing linear inequality constraints of the form A.dot(parameters) - b >= 0

Return type Tuple[ndarray, ndarray]

arch.univariate.EGARCH.forecast


Forecast volatility from the model

Parameters

parameters [{ndarray, Series}] Parameters required to forecast the volatility model
resids  [ndarray] Residuals to use in the recursion
backcast  [float] Value to use when initializing the recursion
var_bounds  [ndarray, 2-d] Array containing columns of lower and upper bounds
start  [[None, int]] Index of the first observation to use as the starting point for the forecast. Default is len(resids).

horizon  [int] Forecast horizon. Must be 1 or larger. Forecasts are produced for horizons in [1, horizon].
method  [['analytic', 'simulation', 'bootstrap']] Method to use when producing the forecast. The default is analytic.
simulations  [int] Number of simulations to run when computing the forecast using either simulation or bootstrap.
rng  [callable] Callable random number generator required if method is 'simulation'. Must take a single shape input and return random samples numbers with that shape.
random_state  [RandomState, optional] NumPy RandomState instance to use when method is 'bootstrap'

Returns
forecasts  [VarianceForecast] Class containing the variance forecasts, and, if using simulation or bootstrap, the simulated paths.

Raises
NotImplementedError
- If method is not supported

ValueError
- If the method is not known

Notes
The analytic method is not supported for all models. Attempting to use this method when not available will raise a ValueError.

Return type  VarianceForecast

arch.univariate. EGARCH . parameter_names

EGARCH . parameter_names (self) → List[str]
Names of model parameters

Returns
names  [list (str)] Variables names

Return type  List[str]
arch.univariate.EGARCH.simulate

EGARCH.simulate (self, parameters: Union[Sequence[Union[int, float]], numpy.ndarray, pandas.core.series.Series], nobs: int, rng: Callable[[Union[int, Tuple[int, ...]], numpy.ndarray], burn: int = 500, initial_value: Union[float, NoneType] = None) → Tuple[numpy.ndarray, numpy.ndarray]

Simulate data from the model

Parameters

parameters [[ndarray, Series]] Parameters required to simulate the volatility model
nobs [int] Number of data points to simulate
rng [callable] Callable function that takes a single integer input and returns a vector of random numbers
burn [int, optional] Number of additional observations to generate when initializing the simulation
initial_value [[float, ndarray], optional] Scalar or array of initial values to use when initializing the simulation

Returns

resids [ndarray] The simulated residuals
variance [ndarray] The simulated variance

Return type Tuple[ndarray, ndarray]

arch.univariate.EGARCH.starting_values

EGARCH.starting_values (self, resids: numpy.ndarray) → numpy.ndarray

Returns starting values for the ARCH model

Parameters

resids [ndarray] Array of (approximate) residuals to use when computing starting values

Returns

sv [ndarray] Array of starting values

Return type ndarray

arch.univariate.EGARCH.variance_bounds

EGARCH.variance_bounds (self, resids: numpy.ndarray, power: float = 2.0) → numpy.ndarray

Construct loose bounds for conditional variances.

These bounds are used in parameter estimation to ensure that the log-likelihood does not produce NaN values.

Parameters

resids [ndarray] Approximate residuals to use to compute the lower and upper bounds on the conditional variance
power [float, optional] Power used in the model. 2.0, the default corresponds to standard ARCH models that evolve in squares.
Returns

var_bounds  [ndarray] Array containing columns of lower and upper bounds with the same number of elements as resids

Return type ndarray

Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>name</td>
<td>The name of the volatility process</td>
</tr>
<tr>
<td>start</td>
<td>Index to use to start variance subarray selection</td>
</tr>
<tr>
<td>stop</td>
<td>Index to use to stop variance subarray selection</td>
</tr>
</tbody>
</table>

arch.univariate.EGARCH.name

EGARCH.name
The name of the volatility process

Return type str

arch.univariate.EGARCH.start

EGARCH.start
Index to use to start variance subarray selection

Return type int

arch.univariate.EGARCH.stop

EGARCH.stop
Index to use to stop variance subarray selection

Return type int

1.8.5 arch.univariate.HARCH

class arch.univariate.HARCH(lags=1)
Heterogeneous ARCH process

Parameters

lags  [[list, array, int]] List of lags to include in the model, or if scalar, includes all lags up the value

Notes

In a Heterogeneous ARCH process, variance dynamics are

$$\sigma_t^2 = \omega + \sum_{i=1}^{m} \alpha_i \left( \sum_{j=1}^{l_i} \epsilon_{t-j}^2 \right)$$
In the common case where lags=[1,5,22], the model is

\[ \sigma^2_t = \omega + \alpha_1 \epsilon^2_{t-1} + \alpha_5 \left( \frac{1}{5} \sum_{j=1}^{5} \epsilon^2_{t-j} \right) + \alpha_{22} \left( \frac{1}{22} \sum_{j=1}^{22} \epsilon^2_{t-j} \right) \]

A HARCH process is a special case of an ARCH process where parameters in the more general ARCH process have been restricted.

**Examples**

```python
>>> from arch.univariate import HARCH

Lag-1 HARCH, which is identical to an ARCH(1)
```

```python
>>> harch = HARCH()
```

More useful and realistic lag lengths

```python
>>> harch = HARCH(lags=[1, 5, 22])
```

**Attributes**

- `num_params` [int] The number of parameters in the model

**Methods**

- `backcast(self, resids)` Construct values for backcasting to start the recursion
- `backcast_transform(self, backcast)` Transformation to apply to user-provided backcast values
- `bounds(self, resids)` Returns bounds for parameters
- `compute_variance(self, parameters, resids, ...)` Compute the variance for the ARCH model
- `constraints(self)` Construct parameter constraints arrays for parameter estimation
- `forecast(self, parameters, ...)` Forecast volatility from the model
- `parameter_names(self)` Names of model parameters
- `simulate(self, parameters, float), ...)` Simulate data from the model
- `starting_values(self, resids)` Returns starting values for the ARCH model
- `variance_bounds(self, resids, power)` Construct loose bounds for conditional variances.

**arch.univariate.HARCH.backcast**

HARCH.backcast(self, resids: numpy.ndarray) → float

Construct values for backcasting to start the recursion

**Parameters**

- `resids` [ndarray] Vector of (approximate) residuals

**Returns**

- `backcast` [float] Value to use in backcasting in the volatility recursion
Return type \texttt{float}

\texttt{arch.univariate.HARCH.backcast_transform}

\texttt{HARCH.backcast_transform}(self, backcast: \texttt{~FloatOrArray}) \rightarrow \texttt{~FloatOrArray}

Transformation to apply to user-provided backcast values

**Parameters**

backcast \[\{\text{float, ndarray}\}\] User-provided \texttt{backcast} that approximates \texttt{sigma2[0]}.

**Returns**

backcast \[\{\text{float, ndarray}\}\] Backcast transformed to the model-appropriate scale

**Return type** \texttt{~FloatOrArray}

\texttt{arch.univariate.HARCH.bounds}

\texttt{HARCH.bounds}(self, resids: \texttt{numpy.ndarray}) \rightarrow \texttt{list[Tuple[float, float]]}

Returns bounds for parameters

**Parameters**

resids \[\text{ndarray}\] Vector of (approximate) residuals

**Returns**

bounds \[\text{list[tuple[float, float]]}\] List of bounds where each element is (lower, upper).

**Return type** \texttt{List[Tuple[float, float]]}

\texttt{arch.univariate.HARCH.compute_variance}

\texttt{HARCH.compute_variance}(self, parameters: \texttt{numpy.ndarray}, resids: \texttt{numpy.ndarray}, sigma2: \texttt{numpy.ndarray}, backcast: \texttt{Union[float, numpy.ndarray]}, var_bounds: \texttt{numpy.ndarray}) \rightarrow \texttt{numpy.ndarray}

Compute the variance for the ARCH model

**Parameters**

parameters \[\text{ndarray}\] Model parameters

resids \[\text{ndarray}\] Vector of mean zero residuals

sigma2 \[\text{ndarray}\] Array with same size as resids to store the conditional variance

backcast \[\{\text{float, ndarray}\}\] Value to use when initializing ARCH recursion. Can be an ndarray when the model contains multiple components.

var_bounds \[\text{ndarray}\] Array containing columns of lower and upper bounds

**Return type** \texttt{ndarray}
arch.univariate.HARCH.constraints

HARCH.constraints(self) → Tuple[numpy.ndarray, numpy.ndarray]

Construct parameter constraints arrays for parameter estimation

**Returns**

- **A** [ndarray] Parameters loadings in constraint. Shape is number of constraints by number of parameters
- **b** [ndarray] Constraint values, one for each constraint

**Notes**

Values returned are used in constructing linear inequality constraints of the form A.dot(parameters) - b >= 0

**Return type** Tuple[ndarray, ndarray]

arch.univariate.HARCH.forecast


Forecast volatility from the model

**Parameters**

- **parameters** [(ndarray, Series)] Parameters required to forecast the volatility model
- **resids** [ndarray] Residuals to use in the recursion
- **backcast** [float] Value to use when initializing the recursion
- **var_bounds** [ndarray, 2-d] Array containing columns of lower and upper bounds
- **start** [(None, int)] Index of the first observation to use as the starting point for the forecast. Default is len(resids).
- **horizon** [int] Forecast horizon. Must be 1 or larger. Forecasts are produced for horizons in [1, horizon].
- **method** [('analytic', 'simulation', 'bootstrap')] Method to use when producing the forecast. The default is analytic.
- **simulations** [int] Number of simulations to run when computing the forecast using either simulation or bootstrap.
- **rng** [callable] Callable random number generator required if method is ‘simulation’. Must take a single shape input and return random samples numbers with that shape.
- **random_state** [RandomState, optional] NumPy RandomState instance to use when method is ‘bootstrap’

**Returns**
forecasts [VarianceForecast] Class containing the variance forecasts, and, if using simulation or bootstrap, the simulated paths.

Raises

NotImplementedError
- If method is not supported

ValueError
- If the method is not known

Notes

The analytic method is not supported for all models. Attempting to use this method when not available will raise a ValueError.

Return type VarianceForecast

arch.univariate.HARCH.parameter_names

HARCH.parameter_names(self) → List[str]
Names of model parameters

Returns

names [list (str)] Variables names

Return type List[str]

arch.univariate.HARCH.simulate

HARCH.simulate(self, parameters: Union[Sequence[Union[int, float]], numpy.ndarray, pandas.core.series.Series], nobs: int, rng: Callable[[Union[int, Tuple[int, ...]]], numpy.ndarray], burn: int = 500, initial_value: Union[float, NoneType] = None) → Tuple[numpy.ndarray, numpy.ndarray]
Simulate data from the model

Parameters

parameters [ndarray, Series] Parameters required to simulate the volatility model

nobs [int] Number of data points to simulate

rng [callable] Callable function that takes a single integer input and returns a vector of random numbers

burn [int, optional] Number of additional observations to generate when initializing the simulation

initial_value [float, ndarray], optional] Scalar or array of initial values to use when initializing the simulation

Returns

resids [ndarray] The simulated residuals

variance [ndarray] The simulated variance

Return type Tuple[ndarray, ndarray]
**arch.univariate.HARCH.starting_values**

HARCH.starting_values (self, resids: numpy.ndarray) → numpy.ndarray

Returns starting values for the ARCH model

**Parameters**

resids [ndarray] Array of (approximate) residuals to use when computing starting values

**Returns**

sv [ndarray] Array of starting values

**Return type** ndarray

**arch.univariate.HARCH.variance_bounds**

HARCH.variance_bounds (self, resids: numpy.ndarray, power: float = 2.0) → numpy.ndarray

Construct loose bounds for conditional variances.

These bounds are used in parameter estimation to ensure that the log-likelihood does not produce NaN values.

**Parameters**

resids [ndarray] Approximate residuals to use to compute the lower and upper bounds on the conditional variance

power [float, optional] Power used in the model. 2.0, the default corresponds to standard ARCH models that evolve in squares.

**Returns**

var_bounds [ndarray] Array containing columns of lower and upper bounds with the same number of elements as resids

**Return type** ndarray

**Properties**

<table>
<thead>
<tr>
<th>name</th>
<th>The name of the volatility process</th>
</tr>
</thead>
<tbody>
<tr>
<td>start</td>
<td>Index to use to start variance subarray selection</td>
</tr>
<tr>
<td>stop</td>
<td>Index to use to stop variance subarray selection</td>
</tr>
</tbody>
</table>

**arch.univariate.HARCH.name**

HARCH.name

The name of the volatility process

**Return type** str

**arch.univariate.HARCH.start**

HARCH.start

Index to use to start variance subarray selection

**Return type** int
arch.univariate.HARCH.stop

HARCH.stop
Index to use to stop variance subarray selection

Return type int

1.8.6 arch.univariate.MIDASHyperbolic
class arch.univariate.MIDASHyperbolic(m=22, asym=False)
MIDAS Hyperbolic ARCH process

Parameters

m [int] Length of maximum lag to include in the model
asym [bool] Flag indicating whether to include an asymmetric term

Notes

In a MIDAS Hyperbolic process, the variance evolves according to

\[ \sigma_i^2 = \omega + \sum_{i=1}^{m} (\alpha + \gamma I[\epsilon_{t-j} < 0]) \phi_\theta(\theta) \epsilon_{t-i}^2 \]

where

\[ \phi_\theta(\theta) \propto \Gamma(i + \theta)/\Gamma(i + 1)\Gamma(\theta) \]

where \( \Gamma \) is the gamma function. \( \{ \phi_\theta(\theta) \} \) is normalized so that \( \sum \phi_\theta(\theta) = 1 \)

References

Examples

```python
>>> from arch.univariate import MIDASHyperbolic
```

22-lag MIDAS Hyperbolic process

```python
>>> harch = MIDASHyperbolic()
```

Longer 66-period lag

```python
>>> harch = MIDASHyperbolic(m=66)
```

Asymmetric MIDAS Hyperbolic process

```python
>>> harch = MIDASHyperbolic(asym=True)
```

Attributes

num_params [int] The number of parameters in the model

Methods
### MIDASHyperbolic Documentation

<table>
<thead>
<tr>
<th>Method Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>backcast(self, resids)</code></td>
<td>Construct values for backcasting to start the recursion</td>
</tr>
<tr>
<td><code>backcast_transform(self, backcast)</code></td>
<td>Transformation to apply to user-provided backcast values</td>
</tr>
<tr>
<td><code>bounds(self, resids)</code></td>
<td>Returns bounds for parameters</td>
</tr>
<tr>
<td><code>compute_variance(self, parameters, resids, ...)</code></td>
<td>Compute the variance for the ARCH model</td>
</tr>
<tr>
<td><code>constraints(self)</code></td>
<td>Constraints</td>
</tr>
<tr>
<td><code>forecast(self, parameters, ...)</code></td>
<td>Forecast volatility from the model</td>
</tr>
<tr>
<td><code>parameter_names(self)</code></td>
<td>Names of model parameters</td>
</tr>
<tr>
<td><code>simulate(self, parameters, float, ...)</code></td>
<td>Simulate data from the model</td>
</tr>
<tr>
<td><code>starting_values(self, resids)</code></td>
<td>Returns starting values for the ARCH model</td>
</tr>
<tr>
<td><code>variance_bounds(self, resids, power)</code></td>
<td>Construct loose bounds for conditional variances.</td>
</tr>
</tbody>
</table>

---

**arch.univariate.MIDASHyperbolic.backcast**

`MIDASHyperbolic.backcast(self, resids: numpy.ndarray) → float`

Construct values for backcasting to start the recursion

**Parameters**

- **resids** [ndarray] Vector of (approximate) residuals

**Returns**

- **backcast** [float] Value to use in backcasting in the volatility recursion

**Return type** float

---

**arch.univariate.MIDASHyperbolic.backcast_transform**

`MIDASHyperbolic.backcast_transform(self, backcast: ~FloatOrArray) → ~FloatOrArray`

Transformation to apply to user-provided backcast values

**Parameters**

- **backcast** [{float, ndarray}] User-provided backcast that approximates sigma2[0].

**Returns**

- **backcast** [{float, ndarray}] Backcast transformed to the model-appropriate scale

**Return type** ~FloatOrArray

---

**arch.univariate.MIDASHyperbolic.bounds**

`MIDASHyperbolic.bounds(self, resids: numpy.ndarray) → List[Tuple[float, float]]`

Returns bounds for parameters

**Parameters**

- **resids** [ndarray] Vector of (approximate) residuals

**Returns**

- **bounds** [list[tuple[float, float]]] List of bounds where each element is (lower, upper).
Return type List[Tuple[float, float]]

`arch.univariate.MIDASHyperbolic.compute_variance`

`MIDASHyperbolic.compute_variance(self, parameters: numpy.ndarray, resids: numpy.ndarray, sigma2: numpy.ndarray, backcast: Union[float, numpy.ndarray], var_bounds: numpy.ndarray) → numpy.ndarray`

Compute the variance for the ARCH model

Parameters

- `parameters` [ndarray] Model parameters
- `resids` [ndarray] Vector of mean zero residuals
- `sigma2` [ndarray] Array with same size as resids to store the conditional variance
- `backcast` [[float, ndarray]] Value to use when initializing ARCH recursion. Can be an ndarray when the model contains multiple components.
- `var_bounds` [ndarray] Array containing columns of lower and upper bounds

Return type ndarray

`arch.univariate.MIDASHyperbolic.constraints`

`MIDASHyperbolic.constraints(self) → Tuple[numpy.ndarray, numpy.ndarray]`

Constraints

Notes

Parameters are (omega, alpha, gamma, theta)

A.dot(parameters) - b >= 0

1. omega > 0
2. alpha > 0 or alpha + gamma > 0
3. alpha < 1 or alpha + 0.5*gamma < 1
4. theta > 0
5. theta < 1

Return type Tuple[ndarray, ndarray]
Arch Documentation, Release 4.13+2.gccbb460e

arch.univariate.MIDASHyperbolic.forecast

MIDASHyperbolic.forecast(self, parameters: Union[numpy.ndarray, pandas.core.series.Series],
resids: numpy.ndarray, backcast: Union[numpy.ndarray, float],
var_bounds: numpy.ndarray, start: Union[int, NoneType] = None, horizon: int = 1, method: str = 'analytic',
simulations: int = 1000, rng: Union[Callable[[Union[int, Tuple[int, ...]]], numpy.ndarray], NoneType] = None, ran-

Forecast volatility from the model

Parameters

parameters [{ndarray, Series}] Parameters required to forecast the volatility model

resids [ndarray] Residuals to use in the recursion

backcast [float] Value to use when initializing the recursion

var_bounds [ndarray, 2-d] Array containing columns of lower and upper bounds

start [{None, int}] Index of the first observation to use as the starting point for the forecast. Default is len(resids).

horizon [int] Forecast horizon. Must be 1 or larger. Forecasts are produced for horizons in [1, horizon].

method [{‘analytic’, ‘simulation’, ‘bootstrap’}] Method to use when producing the forecast. The default is analytic.

simulations [int] Number of simulations to run when computing the forecast using either simulation or bootstrap.

rng [callable] Callable random number generator required if method is ‘simulation’. Must take a single shape input and return random samples numbers with that shape.

random_state [RandomState, optional] NumPy RandomState instance to use when method is ‘bootstrap’

Returns

forecasts [VarianceForecast] Class containing the variance forecasts, and, if using simulation or bootstrap, the simulated paths.

Raises

NotImplementedError
• If method is not supported

ValueError
• If the method is not known

Notes

The analytic method is not supported for all models. Attempting to use this method when not available will raise a ValueError.

Return type VarianceForecast

Chapter 1. Univariate Volatility Models
arch.univariate.MIDASHyperbolic.parameter_names

MIDASHyperbolic.parameter_names (self) → List[str]

Names of model parameters

Returns

names [list (str)] Variables names

Return type List[str]

arch.univariate.MIDASHyperbolic.simulate

MIDASHyperbolic.simulate (self, parameters: Union[Sequence[Union[int, float]], numpy.ndarray, pandas.core.series.Series], nobs: int, rng: Callable[[Union[int, Tuple[int, ...]]], numpy.ndarray], burn: int = 500, initial_value: Union[float, NoneType] = None) → Tuple[numpy.ndarray, numpy.ndarray]

Simulate data from the model

Parameters

parameters [(ndarray, Series)] Parameters required to simulate the volatility model

nobs [int] Number of data points to simulate

rng [callable] Callable function that takes a single integer input and returns a vector of random numbers

burn [int, optional] Number of additional observations to generate when initializing the simulation

initial_value [[float, ndarray], optional] Scalar or array of initial values to use when initializing the simulation

Returns

resids [ndarray] The simulated residuals

variance [ndarray] The simulated variance

Return type Tuple[ndarray, ndarray]

arch.univariate.MIDASHyperbolic.starting_values

MIDASHyperbolic.starting_values (self, resids: numpy.ndarray) → numpy.ndarray

Returns starting values for the ARCH model

Parameters

resids [ndarray] Array of (approximate) residuals to use when computing starting values

Returns

sv [ndarray] Array of starting values

Return type ndarray
arch.univariate.MIDASHyperbolic.variance_bounds

MIDASHyperbolic.variance_bounds(self, resids: numpy.ndarray, power: float = 2.0) → numpy.ndarray

Construct loose bounds for conditional variances. These bounds are used in parameter estimation to ensure that the log-likelihood does not produce NaN values.

Parameters

resids [ndarray] Approximate residuals to use to compute the lower and upper bounds on the conditional variance

power [float, optional] Power used in the model. 2.0, the default corresponds to standard ARCH models that evolve in squares.

Returns

var_bounds [ndarray] Array containing columns of lower and upper bounds with the same number of elements as resids

Return type ndarray

Properties

<table>
<thead>
<tr>
<th>name</th>
<th>The name of the volatility process</th>
</tr>
</thead>
<tbody>
<tr>
<td>start</td>
<td>Index to use to start variance subarray selection</td>
</tr>
<tr>
<td>stop</td>
<td>Index to use to stop variance subarray selection</td>
</tr>
</tbody>
</table>

arch.univariate.MIDASHyperbolic.name

MIDASHyperbolic.name

The name of the volatility process

Return type str

arch.univariate.MIDASHyperbolic.start

MIDASHyperbolic.start

Index to use to start variance subarray selection

Return type int

arch.univariate.MIDASHyperbolic.stop

MIDASHyperbolic.stop

Index to use to stop variance subarray selection

Return type int

1.8.7 arch.univariate.ARCH

class arch.univariate.ARCH(p=1)

ARCH process
Parameters

\(p\) [int] Order of the symmetric innovation

Notes

The variance dynamics of the model estimated

\[ \sigma_t^2 = \omega + \sum_{i=1}^{p} \alpha_i \epsilon_{t-i}^2 \]

Examples

ARCH(1) process

```python
>>> from arch.univariate import ARCH

ARCH(5) process

```  

Attributes

- `num_params` [int] The number of parameters in the model

Methods

- `backcast(self, resids)` Construct values for backcasting to start the recursion
- `backcast_transform(self, backcast)` Transformation to apply to user-provided backcast values
- `bounds(self, resids)` Returns bounds for parameters
- `compute_variance(self, parameters, resids, ...)` Compute the variance for the ARCH model
- `constraints(self)` Construct parameter constraints arrays for parameter estimation
- `forecast(self, parameters, ...)` Forecast volatility from the model
- `parameter_names(self)` Names of model parameters
- `simulate(self, parameters, float[, ...])` Simulate data from the model
- `starting_values(self, resids)` Returns starting values for the ARCH model
- `variance_bounds(self, resids, power)` Construct loose bounds for conditional variances.

### arch.univariate.ARCH.backcast

`ARCH.backcast(self, resids: numpy.ndarray) \rightarrow float`

Construct values for backcasting to start the recursion

#### Parameters

- `resids` [ndarray] Vector of (approximate) residuals

#### Returns
backcast  [float] Value to use in backcasting in the volatility recursion

Return type  float

arch.univariate.ARCH.backcast_transform

ARCH.backcast_transform(self, backcast: ~FloatOrArray) → ~FloatOrArray
Transformation to apply to user-provided backcast values

Parameters

backcast  [[float, ndarray]] User-provided backcast that approximates sigma2[0].

Returns

backcast  [[float, ndarray]] Backcast transformed to the model-appropriate scale

Return type  ~FloatOrArray

arch.univariate.ARCH.bounds

ARCH.bounds(self, resids: numpy.ndarray) → List[Tuple[float, float]]
Returns bounds for parameters

Parameters

resids  [ndarray] Vector of (approximate) residuals

Returns

bounds  [list[tuple[float,float]]] List of bounds where each element is (lower, upper).

Return type  List[Tuple[float,float]]

arch.univariate.ARCH.compute_variance

ARCH.compute_variance(self, parameters: numpy.ndarray, resids: numpy.ndarray, sigma2: numpy.ndarray, backcast: Union[float, numpy.ndarray], var_bounds: numpy.ndarray) → numpy.ndarray
Compute the variance for the ARCH model

Parameters

parameters  [ndarray] Model parameters
resids  [ndarray] Vector of mean zero residuals
sigma2  [ndarray] Array with same size as resids to store the conditional variance
backcast  [[float, ndarray]] Value to use when initializing ARCH recursion. Can be an ndarray when the model contains multiple components.
var_bounds  [ndarray] Array containing columns of lower and upper bounds

Return type  ndarray
arch.univariate.ARCH.constraints

ARCH.constraints(self) → Tuple[numpy.ndarray, numpy.ndarray]
Construct parameter constraints arrays for parameter estimation

Returns

A [ndarray] Parameters loadings in constraint. Shape is number of constraints by number of parameters
b [ndarray] Constraint values, one for each constraint

Notes

Values returned are used in constructing linear inequality constraints of the form A.dot(params) - b >= 0

Return type Tuple[ndarray, ndarray]

arch.univariate.ARCH.forecast

Forecast volatility from the model

Parameters

parameters [{ndarray, Series}] Parameters required to forecast the volatility model
resids [ndarray] Residuals to use in the recursion
backcast [float] Value to use when initializing the recursion
var_bounds [ndarray, 2-d] Array containing columns of lower and upper bounds
start [{None, int}] Index of the first observation to use as the starting point for the forecast. Default is len(resids).
horizon [int] Forecast horizon. Must be 1 or larger. Forecasts are produced for horizons in [1, horizon).
method [{‘analytic’, ‘simulation’, ‘bootstrap’}] Method to use when producing the forecast. The default is analytic.
simulations [int] Number of simulations to run when computing the forecast using either simulation or bootstrap.
rng [callable] Callable random number generator required if method is ‘simulation’. Must take a single shape input and return random samples numbers with that shape.
random_state [RandomState, optional] NumPy RandomState instance to use when method is ‘bootstrap’

Returns
forecasts  [VarianceForecast] Class containing the variance forecasts, and, if using simulation or bootstrap, the simulated paths.

Raises

NotImplementedError

• If method is not supported

ValueError

• If the method is not known

Notes

The analytic method is not supported for all models. Attempting to use this method when not available will raise a ValueError.

Return type  VarianceForecast

arch.univariate.ARCH.parameter_names

ARCH.parameter_names(self) → List[str]

Names of model parameters

Returns

names  [list (str)] Variables names

Return type  List[str]

arch.univariate.ARCH.simulate

ARCH.simulate(self, parameters: Union[Sequence[Union[int, float]], numpy.ndarray, pandas.core.series.Series], nobs: int, rng: Callable[[Union[int, Tuple[int, ...]]], numpy.ndarray], burn: int = 500, initial_value: Union[Float, NoneType] = None) → Tuple[numpy.ndarray, numpy.ndarray]

Simulate data from the model

Parameters

parameters  [[ndarray, Series]] Parameters required to simulate the volatility model

nobs  [int] Number of data points to simulate

rng  [callable] Callable function that takes a single integer input and returns a vector of random numbers

burn  [int, optional] Number of additional observations to generate when initializing the simulation

initial_value  [[float, ndarray], optional] Scalar or array of initial values to use when initializing the simulation

Returns

resids  [ndarray] The simulated residuals

variance  [ndarray] The simulated variance

Return type  Tuple[ndarray, ndarray]
arch.univariate.ARCH.starting_values

ARCH.starting_values (self, resids: numpy.ndarray) → numpy.ndarray
Returns starting values for the ARCH model

Parameters
resids [ndarray] Array of (approximate) residuals to use when computing starting values

Returns
sv [ndarray] Array of starting values

Return type ndarray

arch.univariate.ARCH.variance_bounds

ARCH.variance_bounds (self, resids: numpy.ndarray, power: float = 2.0) → numpy.ndarray
Construct loose bounds for conditional variances.
These bounds are used in parameter estimation to ensure that the log-likelihood does not produce NaN values.

Parameters
resids [ndarray] Approximate residuals to use to compute the lower and upper bounds on the conditional variance
power [float, optional] Power used in the model. 2.0, the default corresponds to standard ARCH models that evolve in squares.

Returns
var_bounds [ndarray] Array containing columns of lower and upper bounds with the same number of elements as resids

Return type ndarray

Properties

<table>
<thead>
<tr>
<th>name</th>
<th>The name of the volatility process</th>
</tr>
</thead>
<tbody>
<tr>
<td>start</td>
<td>Index to use to start variance subarray selection</td>
</tr>
<tr>
<td>stop</td>
<td>Index to use to stop variance subarray selection</td>
</tr>
</tbody>
</table>

arch.univariate.ARCH.name

ARCH.name
The name of the volatility process

Return type str

arch.univariate.ARCH.start

ARCH.start
Index to use to start variance subarray selection

Return type int

1.8. Volatility Processes
arch Documentation, Release 4.13+2.gccbb460e

arch.univariate.ARCH.stop

ARCH.stop
Index to use to stop variance subarray selection

Return type int

1.8.8 Parameterless Variance Processes

Some volatility processes use fixed parameters and so have no parameters that are estimable.

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>EWMAVariance(lam)</code></td>
<td>Exponentially Weighted Moving-Average (RiskMetrics) Variance process</td>
</tr>
<tr>
<td><code>RiskMetrics2006(tau0, tau1, kmax, rho)</code></td>
<td>RiskMetrics 2006 Variance process</td>
</tr>
</tbody>
</table>

**arch.univariate.EWMAVariance**

class arch.univariate.EWMAVariance(lam=0.94)
Exponentially Weighted Moving-Average (RiskMetrics) Variance process

Parameters

- **lam** ([float, None], optional)  
  Smoothing parameter. Default is 0.94. Set to None to estimate lam jointly with other model parameters

Notes

The variance dynamics of the model

\[ \sigma_t^2 = \lambda \sigma_{t-1}^2 + (1 - \lambda) \epsilon_t^2 \]

When lam is provided, this model has no parameters since the smoothing parameter is treated as fixed. Set lam to None to jointly estimate this parameter when fitting the model.

Examples

Daily RiskMetrics EWMA process

```python
>>> from arch.univariate import EWMAVariance
>>> rm = EWMAVariance(0.94)
```

Attributes

- **num_params** [int] The number of parameters in the model

Methods

- **backcast(self, resid)**  
  Construct values for backcasting to start the recursion

Continued on next page
Table 31 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>backcast_transform</code></td>
<td>Transformation to apply to user-provided backcast values</td>
</tr>
<tr>
<td><code>bounds</code></td>
<td>Returns bounds for parameters</td>
</tr>
<tr>
<td><code>compute_variance</code></td>
<td>Compute the variance for the ARCH model</td>
</tr>
<tr>
<td><code>constraints</code></td>
<td>Construct parameter constraints arrays for parameter estimation</td>
</tr>
<tr>
<td><code>forecast</code></td>
<td>Forecast volatility from the model</td>
</tr>
<tr>
<td><code>parameter_names</code></td>
<td>Names of model parameters</td>
</tr>
<tr>
<td><code>simulate</code></td>
<td>Simulate data from the model</td>
</tr>
<tr>
<td><code>starting_values</code></td>
<td>Returns starting values for the ARCH model</td>
</tr>
<tr>
<td><code>variance_bounds</code></td>
<td>Construct loose bounds for conditional variances.</td>
</tr>
</tbody>
</table>

**arch.univariate.EWMAVariance.backcast**

EWMAVariance. `backcast` (self, resid: numpy.ndarray) → float

Construct values for backcasting to start the recursion

Parameters
- resid [ndarray] Vector of (approximate) residuals

Returns
- backcast [float] Value to use in backcasting in the volatility recursion

Return type float

**arch.univariate.EWMAVariance.backcast_transform**

EWMAVariance. `backcast_transform` (self, backcast: ~FloatOrArray) → ~FloatOrArray

Transformation to apply to user-provided backcast values

Parameters
- backcast [[float, ndarray]] User-provided backcast that approximates sigma2[0].

Returns
- backcast [[float, ndarray]] Backcast transformed to the model-appropriate scale

Return type ~FloatOrArray

**arch.univariate.EWMAVariance.bounds**

EWMAVariance. `bounds` (self, resid: numpy.ndarray) → List[tuple[float, float]]

Returns bounds for parameters

Parameters
- resid [ndarray] Vector of (approximate) residuals

Returns
- bounds [list[tuple[float, float]]] List of bounds where each element is (lower, upper).
Return type: List[Tuple[float, float]]

arch.univariate.EWMAVariance.compute_variance

EWMAVariance.compute_variance(self, parameters: numpy.ndarray, resids: numpy.ndarray, sigma2: numpy.ndarray, backcast: Union[float, numpy.ndarray], var_bounds: numpy.ndarray) → numpy.ndarray

Compute the variance for the ARCH model

Parameters

- **parameters**: [ndarray] Model parameters
- **resids**: [ndarray] Vector of mean zero residuals
- **sigma2**: [ndarray] Array with same size as resids to store the conditional variance
- **backcast**: [[float, ndarray]] Value to use when initializing ARCH recursion. Can be an ndarray when the model contains multiple components.
- **var_bounds**: [ndarray] Array containing columns of lower and upper bounds

Return type: ndarray

arch.univariate.EWMAVariance.constraints

EWMAVariance.constraints(self) → Tuple[numpy.ndarray, numpy.ndarray]

Construct parameter constraints arrays for parameter estimation

Returns

- **A**: [ndarray] Parameters loadings in constraint. Shape is number of constraints by number of parameters
- **b**: [ndarray] Constraint values, one for each constraint

Notes

Values returned are used in constructing linear inequality constraints of the form A.dot(parameters) - b >= 0

Return type: Tuple[numpy.ndarray, numpy.ndarray]

arch.univariate.EWMAVariance.forecast


Forecast volatility from the model

Parameters
parameters  [[ndarray, Series]] Parameters required to forecast the volatility model
resids  [ndarray] Residuals to use in the recursion
backcast  [float] Value to use when initializing the recursion
var_bounds  [ndarray, 2-d] Array containing columns of lower and upper bounds
start  [[None, int]] Index of the first observation to use as the starting point for the forecast. Default is len(resids).
horizon  [int] Forecast horizon. Must be 1 or larger. Forecasts are produced for horizons in [1, horizon].
method  [[‘analytic’, ‘simulation’, ‘bootstrap’]] Method to use when producing the forecast. The default is analytic.
simulations  [int] Number of simulations to run when computing the forecast using either simulation or bootstrap.
rng  [callable] Callable random number generator required if method is ‘simulation’. Must take a single shape input and return random samples numbers with that shape.
random_state  [RandomState, optional] NumPy RandomState instance to use when method is ‘bootstrap’

Returns
forecasts  [VarianceForecast] Class containing the variance forecasts, and, if using simulation or bootstrap, the simulated paths.

Raises
NotImplementedError
• If method is not supported
ValueError
• If the method is not known

Notes
The analytic method is not supported for all models. Attempting to use this method when not available will raise a ValueError.

Return type VarianceForecast

arch.univariate.EWMAVariance.parameter_names

EWMAVariance. parameter_names  (self) → List[st]
Names of model parameters

Returns
names  [list (str)] Variables names

Return type List[st]
arch.univariate.EWMAVariance.simulate

EWMAVariance.simulate(self, parameters: Union[Sequence[Union[int, float]], numpy.ndarray, pandas.core.series.Series], nobs: int, rng: Callable[[Union[int, Tuple[int, ...]]], numpy.ndarray], burn: int = 500, initial_value: Union[float, NoneType] = None) \rightarrow Tuple[numpy.ndarray, numpy.ndarray]

Simulate data from the model

Parameters

parameters [{ndarray, Series}] Parameters required to simulate the volatility model
nobs [int] Number of data points to simulate
rng [callable] Callable function that takes a single integer input and returns a vector of random numbers
burn [int, optional] Number of additional observations to generate when initializing the simulation
initial_value [{float, ndarray}, optional] Scalar or array of initial values to use when initializing the simulation

Returns

resids [ndarray] The simulated residuals
variance [ndarray] The simulated variance

Return type Tuple[ndarray, ndarray]

arch.univariate.EWMAVariance.starting_values

EWMAVariance.starting_values(self, resids: numpy.ndarray) \rightarrow numpy.ndarray

Returns starting values for the ARCH model

Parameters

resids [ndarray] Array of (approximate) residuals to use when computing starting values

Returns

sv [ndarray] Array of starting values

Return type ndarray

arch.univariate.EWMAVariance.variance_bounds

EWMAVariance.variance_bounds(self, resids: numpy.ndarray, power: float = 2.0) \rightarrow numpy.ndarray

Construct loose bounds for conditional variances.

These bounds are used in parameter estimation to ensure that the log-likelihood does not produce NaN values.

Parameters

resids [ndarray] Approximate residuals to use to compute the lower and upper bounds on the conditional variance
**power**  [float, optional] Power used in the model. 2.0, the default corresponds to standard ARCH models that evolve in squares.

**Returns**

**var_bounds**  [ndarray] Array containing columns of lower and upper bounds with the same number of elements as resid

**Return type**  *ndarray*

**Properties**

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><em>name</em></td>
<td>The name of the volatility process</td>
</tr>
<tr>
<td><em>start</em></td>
<td>Index to use to start variance subarray selection</td>
</tr>
<tr>
<td><em>stop</em></td>
<td>Index to use to stop variance subarray selection</td>
</tr>
</tbody>
</table>

**arch.univariate.EWMAVariance.name**

EWMAVariance.[name]  
The name of the volatility process  
**Return type**  *str*

**arch.univariate.EWMAVariance.start**

EWMAVariance.[start]  
Index to use to start variance subarray selection  
**Return type**  *int*

**arch.univariate.EWMAVariance.stop**

EWMAVariance.[stop]  
Index to use to stop variance subarray selection  
**Return type**  *int*

**arch.univariate.RiskMetrics2006**

**class**  *arch.univariate.RiskMetrics2006*(\(\tau_0=1560\), \(\tau_1=4\), \(kmax=14\), \(\rho=1.4142135623730951\))  
RiskMetrics 2006 Variance process  

**Parameters**

- \(\tau_0\): [int, float], optional] Length of long cycle. Default is 1560.
- \(\tau_1\): [int, float], optional] Length of short cycle. Default is 4.
- \(kmax\): [int, optional] Number of components. Default is 14.
- \(\rho\): [float, optional] Relative scale of adjacent cycles. Default is sqrt(2)
Notes

The variance dynamics of the model are given as a weighted average of \( k_{\text{max}} \) EWMA variance processes where the smoothing parameters and weights are determined by \( \tau_0, \tau_1 \) and \( \rho \).

This model has no parameters since the smoothing parameter is fixed.

Examples

Daily RiskMetrics 2006 process

```python
>>> from arch.univariate import RiskMetrics2006
>>> rm = RiskMetrics2006()
```

Attributes

- `num_params` [int] The number of parameters in the model

Methods

- `backcast(self, resids)` Construct values for backcasting to start the recursion
- `backcast_transform(self, backcast)` Transformation to apply to user-provided backcast values
- `bounds(self, resids)` Returns bounds for parameters
- `compute_variance(self, parameters, resids, ...)` Compute the variance for the ARCH model
- `constraints(self)` Construct parameter constraints arrays for parameter estimation
- `forecast(self, parameters, ...)` Forecast volatility from the model
- `parameter_names(self)` Names of model parameters
- `simulate(self, parameters, float[]), ...)` Simulate data from the model
- `starting_values(self, resids)` Returns starting values for the ARCH model
- `variance_bounds(self, resids, power)` Construct loose bounds for conditional variances.

```python
arch.univariate.RiskMetrics2006.backcast
```

RiskMetrics2006.backcast (self, resids: numpy.ndarray) → numpy.ndarray

Construct values for backcasting to start the recursion

Parameters

- `resids` [ndarray] Vector of (approximate) residuals

Returns

- `backcast` [ndarray] Backcast values for each EWMA component

Return type `ndarray`
arch.univariate.RiskMetrics2006.backcast_transform

RiskMetrics2006.backcast_transform(self, backcast: ~FloatOrArray) → ~FloatOrArray
Transformation to apply to user-provided backcast values

Parameters
backcast [{float, ndarray}] User-provided backcast that approximates sigma2[0].

Returns
backcast [{float, ndarray}] Backcast transformed to the model-appropriate scale

Return type ~FloatOrArray

arch.univariate.RiskMetrics2006.bounds

RiskMetrics2006.bounds(self, resids: numpy.ndarray) → List[Tuple[float, float]]
Returns bounds for parameters

Parameters
resids [ndarray] Vector of (approximate) residuals

Returns
bounds [list[tuple[float,float]]] List of bounds where each element is (lower, upper).

Return type List[Tuple[float,float]]

arch.univariate.RiskMetrics2006.compute_variance

Compute the variance for the ARCH model

Parameters
parameters [ndarray] Model parameters
resids [ndarray] Vector of mean zero residuals
sigma2 [ndarray] Array with same size as resids to store the conditional variance
backcast [{float, ndarray}] Value to use when initializing ARCH recursion. Can be an ndarray when the model contains multiple components.
var_bounds [ndarray] Array containing columns of lower and upper bounds

Return type ndarray

arch.univariate.RiskMetrics2006.constraints

RiskMetrics2006.constraints(self) → Tuple[numpy.ndarray, numpy.ndarray]
Construct parameter constraints arrays for parameter estimation
Returns

**A** [ndarray] Parameters loadings in constraint. Shape is number of constraints by number of parameters

**b** [ndarray] Constraint values, one for each constraint

Notes

Values returned are used in constructing linear inequality constraints of the form A.dot(parameters) - b >= 0

Return type **Tuple[ndarray, ndarray]**

`arch.univariate.RiskMetrics2006.forecast`

RiskMetrics2006.**forecast** (self, **parameters**: Union[numpy.ndarray, pandas.core.series.Series], **resids**: numpy.ndarray, **backcast**: Union[numpy.ndarray, float], **var_bounds**: numpy.ndarray, **start**: Union[int, NoneType] = None, **horizon**: int = 1, **method**: str = 'analytic', **simulations**: int = 1000, **rng**: Union[Callable[[Union[int, Tuple[int, ...]]], numpy.ndarray], NoneType] = None, **random_state**: numpy.random.mtrand.RandomState = None) → arch.univariate.volatility.VarianceForecast

Forecast volatility from the model

Parameters

**parameters** [[ndarray, Series]] Parameters required to forecast the volatility model

**resids** [ndarray] Residuals to use in the recursion

**backcast** [float] Value to use when initializing the recursion

**var_bounds** [ndarray, 2-d] Array containing columns of lower and upper bounds

**start** [[None, int]] Index of the first observation to use as the starting point for the forecast. Default is len(resids).

**horizon** [int] Forecast horizon. Must be 1 or larger. Forecasts are produced for horizons in [1, horizon].

**method** [[‘analytic’, ‘simulation’, ‘bootstrap’]] Method to use when producing the forecast. The default is analytic.

**simulations** [int] Number of simulations to run when computing the forecast using either simulation or bootstrap.

**rng** [callable] Callable random number generator required if method is ‘simulation’. Must take a single shape input and return random samples numbers with that shape.

**random_state** [RandomState, optional] NumPy RandomState instance to use when method is ‘bootstrap’

Returns

**forecasts** [VarianceForecast] Class containing the variance forecasts, and, if using simulation or bootstrap, the simulated paths.

Raises
**NotImplementedError**

- If method is not supported

**ValueError**

- If the method is not known

**Notes**

The analytic method is not supported for all models. Attempting to use this method when not available will raise a ValueError.

**Return type** `VarianceForecast`

### arch.univariate.RiskMetrics2006.parameter_names

**RiskMetrics2006.parameter_names** *(self) → List[str]*

Names of model parameters

**Returns**

- `names` *(List[str])* Variables names

**Return type** `List[str]`

### arch.univariate.RiskMetrics2006.simulate

**RiskMetrics2006.simulate** *(self, parameters: Union[Sequence[Union[int, float]], numpy.ndarray, pandas.core.series.Series], nobs: int, rng: Callable[[Union[int, Tuple[int, ...]]], numpy.ndarray], burn: int = 500, initial_value: Union[float, NoneType] = None) → Tuple[numpy.ndarray, numpy.ndarray]*

Simulate data from the model

**Parameters**

- `parameters` *(Union[Sequence[Union[int, float]], numpy.ndarray, pandas.core.series.Series])* Parameters required to simulate the volatility model
- `nobs` *(int)* Number of data points to simulate
- `rng` *(Callable)* Callable function that takes a single integer input and returns a vector of random numbers
- `burn` *(int, optional)* Number of additional observations to generate when initializing the simulation
- `initial_value` *(Union[float, NoneType], optional)* Scalar or array of initial values to use when initializing the simulation

**Returns**

- `resids` *(numpy.ndarray)* The simulated residuals
- `variance` *(numpy.ndarray)* The simulated variance

**Return type** `Tuple[numpy.ndarray, numpy.ndarray]`
arch.univariate.RiskMetrics2006.starting_values

RiskMetrics2006.starting_values (self, resids: numpy.ndarray) → numpy.ndarray
Returns starting values for the ARCH model

Parameters

resids [ndarray] Array of (approximate) residuals to use when computing starting values

Returns

sv [ndarray] Array of starting values

Return type ndarray

arch.univariate.RiskMetrics2006.variance_bounds

RiskMetrics2006.variance_bounds (self, resids: numpy.ndarray, power: float = 2.0) → numpy.ndarray
Construct loose bounds for conditional variances.
These bounds are used in parameter estimation to ensure that the log-likelihood does not produce NaN values.

Parameters

resids [ndarray] Approximate residuals to use to compute the lower and upper bounds on the conditional variance

power [float, optional] Power used in the model. 2.0, the default corresponds to standard ARCH models that evolve in squares.

Returns

var_bounds [ndarray] Array containing columns of lower and upper bounds with the same number of elements as resids

Return type ndarray

Properties

<table>
<thead>
<tr>
<th>name</th>
<th>The name of the volatility process</th>
</tr>
</thead>
<tbody>
<tr>
<td>start</td>
<td>Index to use to start variance subarray selection</td>
</tr>
<tr>
<td>stop</td>
<td>Index to use to stop variance subarray selection</td>
</tr>
</tbody>
</table>

arch.univariate.RiskMetrics2006.name

RiskMetrics2006.name
The name of the volatility process

Return type str
### arch.univariate.RiskMetrics2006.start

`RiskMetrics2006.start`  
Index to use to start variance subarray selection  
**Return type** int

### arch.univariate.RiskMetrics2006.stop

`RiskMetrics2006.stop`  
Index to use to stop variance subarray selection  
**Return type** int

### 1.8.9 FixedVariance

The `FixedVariance` class is a special-purpose volatility process that allows the so-called zig-zag algorithm to be used. See the example for usage.

```python
FixedVariance(variance[, unit_scale]) Fixed volatility process
```

### arch.univariate.FixedVariance

#### class arch.univariate.FixedVariance(variance, unit_scale=False)

Fixed volatility process

**Parameters**

- **variance** [{array, Series}] Array containing the variances to use. Should have the same shape as the data used in the model.
- **unit_scale** [bool, optional] Flag whether to enforce a unit scale. If False, a scale parameter will be estimated so that the model variance will be proportional to `variance`. If True, the model variance is set of `variance`

**Notes**

Allows a fixed set of variances to be used when estimating a mean model, allowing GLS estimation.

**Methods**

- `backcast(self, resids)`  
  Construct values for backcasting to start the recursion
- `backcast_transform(self, backcast)`  
  Transformation to apply to user-provided backcast values
- `bounds(self, resids)`  
  Returns bounds for parameters
- `compute_variance(self, parameters, resids, ...)`  
  Compute the variance for the ARCH model
- `constraints(self)`  
  Construct parameter constraints arrays for parameter estimation

Continued on next page
### Table 36 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>forecast(self, parameters, ...)</code></td>
<td>Forecast volatility from the model</td>
</tr>
<tr>
<td><code>parameter_names(self)</code></td>
<td>Names of model parameters</td>
</tr>
<tr>
<td><code>simulate(self, parameters, float[]), ...)</code></td>
<td>Simulate data from the model</td>
</tr>
<tr>
<td><code>starting_values(self, resids)</code></td>
<td>Returns starting values for the ARCH model</td>
</tr>
<tr>
<td><code>variance_bounds(self, resids, power)</code></td>
<td>Construct loose bounds for conditional variances.</td>
</tr>
</tbody>
</table>

### arch.univariate.FixedVariance.backcast

`FixedVariance.backcast(self, resids: numpy.ndarray) → float`

Construct values for backcasting to start the recursion

**Parameters**

- `resids` [ndarray] Vector of (approximate) residuals

**Returns**

- `backcast` [float] Value to use in backcasting in the volatility recursion

**Return type** float

### arch.univariate.FixedVariance.backcast_transform

`FixedVariance.backcast_transform(self, backcast: ~FloatOrArray) → ~FloatOrArray`

Transformation to apply to user-provided backcast values

**Parameters**

- `backcast` [{float, ndarray}] User-provided `backcast` that approximates `sigma2[0]`

**Returns**

- `backcast` [{float, ndarray}] Backcast transformed to the model-appropriate scale

**Return type** ~FloatOrArray

### arch.univariate.FixedVariance.bounds

`FixedVariance.bounds(self, resids: numpy.ndarray) → List[Tuple[float, float]]`

Returns bounds for parameters

**Parameters**

- `resids` [ndarray] Vector of (approximate) residuals

**Returns**

- `bounds` [list[tuple[float, float]]] List of bounds where each element is (lower, upper).

**Return type** List[Tuple[float, float]]
**arch.univariate.FixedVariance.compute_variance**

```python
FixedVariance.compute_variance(self, parameters: numpy.ndarray, resids: numpy.ndarray, sigma2: numpy.ndarray, backcast: Union[float, numpy.ndarray], var_bounds: numpy.ndarray) \rightarrow numpy.ndarray
```

Compute the variance for the ARCH model

**Parameters**
- `parameters [ndarray]` Model parameters
- `resids [ndarray]` Vector of mean zero residuals
- `sigma2 [ndarray]` Array with same size as resids to store the conditional variance
- `backcast [[float, ndarray]]` Value to use when initializing ARCH recursion. Can be an ndarray when the model contains multiple components.
- `var_bounds [ndarray]` Array containing columns of lower and upper bounds

**Return type** `ndarray`

**arch.univariate.FixedVariance.constraints**

```python
FixedVariance.constraints(self) \rightarrow Tuple[numpy.ndarray, numpy.ndarray]
```

Construct parameter constraints arrays for parameter estimation

**Returns**
- `A [ndarray]` Parameters loadings in constraint. Shape is number of constraints by number of parameters
- `b [ndarray]` Constraint values, one for each constraint

**Notes**

Values returned are used in constructing linear inequality constraints of the form $A \cdot \text{parameters} - b \geq 0$

**Return type** `Tuple[ndarray, ndarray]`

**arch.univariate.FixedVariance.forecast**

```python
```

Forecast volatility from the model

**Parameters**
- `parameters [{ndarray, Series}]` Parameters required to forecast the volatility model
- `resids [ndarray]` Residuals to use in the recursion
backcast [float] Value to use when initializing the recursion

var_bounds [ndarray, 2-d] Array containing columns of lower and upper bounds

start [(None, int)] Index of the first observation to use as the starting point for the forecast. Default is len(resids).

horizon [int] Forecast horizon. Must be 1 or larger. Forecasts are produced for horizons in [1, horizon].

method ['analytic', 'simulation', 'bootstrap'] Method to use when producing the forecast. The default is analytic.

simulations [int] Number of simulations to run when computing the forecast using either simulation or bootstrap.

rng [callable] Callable random number generator required if method is ‘simulation’. Must take a single shape input and return random samples numbers with that shape.

random_state [RandomState, optional] NumPy RandomState instance to use when method is ‘bootstrap’

Returns

forecasts [VarianceForecast] Class containing the variance forecasts, and, if using simulation or bootstrap, the simulated paths.

Raises

NotImplementedError

• If method is not supported

ValueError

• If the method is not known

Notes

The analytic method is not supported for all models. Attempting to use this method when not available will raise a ValueError.

Return type VarianceForecast

arch.univariate.FixedVariance.parameter_names

FixedVariance. parameter_names (self) → List[str]

Names of model parameters

Returns

names [list (str)] Variables names

Return type List[str]
**arch.univariate.FixedVariance.simulate**

```
FixedVariance.simulate(self, parameters: Union[Sequence[Union[int, float]], numpy.ndarray, pandas.core.series.Series], nobs: int, rng: Callable[[Union[int, Tuple[int, ...]]], numpy.ndarray], burn: int = 500, initial_value: Union[float, NoneType] = None) -> Tuple[numpy.ndarray, numpy.ndarray]
```

Simulate data from the model

**Parameters**

- `parameters` ([ndarray, Series]) Parameters required to simulate the volatility model
- `nobs` [int] Number of data points to simulate
- `rng` [callable] Callable function that takes a single integer input and returns a vector of random numbers
- `burn` [int, optional] Number of additional observations to generate when initializing the simulation
- `initial_value` ([float, ndarray], optional) Scalar or array of initial values to use when initializing the simulation

**Returns**

- `resids` [ndarray] The simulated residuals
- `variance` [ndarray] The simulated variance

**Return type** `Tuple[numpy.ndarray, numpy.ndarray]`

---

**arch.univariate.FixedVariance.starting_values**

```
FixedVariance.starting_values(self, resids: numpy.ndarray) -> numpy.ndarray
```

Returns starting values for the ARCH model

**Parameters**

- `resids` [ndarray] Array of (approximate) residuals to use when computing starting values

**Returns**

- `sv` [ndarray] Array of starting values

**Return type** `ndarray`

---

**arch.univariate.FixedVariance.variance_bounds**

```
FixedVariance.variance_bounds(self, resids: numpy.ndarray, power: float = 2.0) -> numpy.ndarray
```

Construct loose bounds for conditional variances.

These bounds are used in parameter estimation to ensure that the log-likelihood does not produce NaN values.

**Parameters**

- `resids` [ndarray] Approximate residuals to use to compute the lower and upper bounds on the conditional variance
power [float, optional] Power used in the model. 2.0, the default corresponds to standard ARCH models that evolve in squares.

Returns

var_bounds [ndarray] Array containing columns of lower and upper bounds with the same number of elements as resids

Return type ndarray

Properties

<table>
<thead>
<tr>
<th>name</th>
<th>The name of the volatility process</th>
</tr>
</thead>
<tbody>
<tr>
<td>start</td>
<td>Index to use to start variance subarray selection</td>
</tr>
<tr>
<td>stop</td>
<td>Index to use to stop variance subarray selection</td>
</tr>
</tbody>
</table>

arch.univariate.FixedVariance.name

FixedVariance.name

The name of the volatility process

Return type str

arch.univariate.FixedVariance.start

FixedVariance.start

Index to use to start variance subarray selection

Return type int

arch.univariate.FixedVariance.stop

FixedVariance.stop

Index to use to stop variance subarray selection

Return type int

1.8.10 Writing New Volatility Processes

All volatility processes must inherit from :class:VolatilityProcess and provide all public methods.

VolatilityProcess()

Abstract base class for ARCH models.

arch.univariate.volatility.VolatilityProcess

class arch.univariate.volatility.VolatilityProcess

Abstract base class for ARCH models. Allows the conditional mean model to be specified separately from the conditional variance, even though parameters are estimated jointly.
## Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>backcast(self, resids)</code></td>
<td>Construct values for backcasting to start the recursion</td>
</tr>
<tr>
<td><code>backcast_transform(self, backcast)</code></td>
<td>Transformation to apply to user-provided backcast values</td>
</tr>
<tr>
<td><code>bounds(self, resids)</code></td>
<td>Returns bounds for parameters</td>
</tr>
<tr>
<td><code>compute_variance(self, parameters, resids, ...)</code></td>
<td>Compute the variance for the ARCH model</td>
</tr>
<tr>
<td><code>constraints(self)</code></td>
<td>Construct parameter constraints arrays for parameter estimation</td>
</tr>
<tr>
<td><code>forecast(self, parameters, ...)</code></td>
<td>Forecast volatility from the model</td>
</tr>
<tr>
<td><code>parameter_names(self)</code></td>
<td>Names of model parameters</td>
</tr>
<tr>
<td><code>simulate(self, parameters, float], ...)</code></td>
<td>Simulate data from the model</td>
</tr>
<tr>
<td><code>starting_values(self, resids)</code></td>
<td>Returns starting values for the ARCH model</td>
</tr>
<tr>
<td><code>variance_bounds(self, resids, power)</code></td>
<td>Construct loose bounds for conditional variances.</td>
</tr>
</tbody>
</table>

### arch.univariate.volatility.VolatilityProcess.backcast

VolatilityProcess.backcast (self, resids: numpy.ndarray) → float

Construct values for backcasting to start the recursion

**Parameters**

- **resids** [ndarray] Vector of (approximate) residuals

**Returns**

- **backcast** [float] Value to use in backcasting in the volatility recursion

  **Return type** float

### arch.univariate.volatility.VolatilityProcess.backcast_transform

VolatilityProcess.backcast_transform (self, backcast: ~FloatOrArray) → ~FloatOrArray

Transformation to apply to user-provided backcast values

**Parameters**

- **backcast** [{float, ndarray}] User-provided backcast that approximates sigma2[0].

**Returns**

- **backcast** [{float, ndarray}] Backcast transformed to the model-appropriate scale

  **Return type** ~FloatOrArray

### arch.univariate.volatility.VolatilityProcess.bounds

VolatilityProcess.bounds (self, resids: numpy.ndarray) → List[Tuple[float, float]]

Returns bounds for parameters

**Parameters**

- **resids** [ndarray] Vector of (approximate) residuals
Returns

**bounds**  [list[tuple[float, float]]] List of bounds where each element is (lower, upper).

**Return type** List[Tuple[float, float]]

```
arch.univariate.volatility.VolatilityProcess.compute_variance
```


Compute the variance for the ARCH model

**Parameters**

- **parameters**  [ndarray] Model parameters
- **resids**  [ndarray] Vector of mean zero residuals
- **sigma2**  [ndarray] Array with same size as resids to store the conditional variance
- **backcast**  [[float, ndarray]] Value to use when initializing ARCH recursion. Can be an ndarray when the model contains multiple components.
- **var_bounds**  [ndarray] Array containing columns of lower and upper bounds

**Return type** ndarray

```
arch.univariate.volatility.VolatilityProcess.constraints
```

VolatilityProcess.constraints(self) → Tuple[numpy.ndarray, numpy.ndarray]

Construct parameter constraints arrays for parameter estimation

**Returns**

- **A**  [ndarray] Parameters loadings in constraint. Shape is number of constraints by number of parameters
- **b**  [ndarray] Constraint values, one for each constraint

**Notes**

Values returned are used in constructing linear inequality constraints of the form A.dot(parameters) - b >= 0

**Return type** Tuple[ndarray, ndarray]
Forecast volatility from the model

**Parameters**

- **parameters** ([ndarray, Series]) Parameters required to forecast the volatility model
- **resids** [ndarray] Residuals to use in the recursion
- **backcast** [float] Value to use when initializing the recursion
- **var_bounds** [ndarray, 2-d] Array containing columns of lower and upper bounds
- **start** [None, int] Index of the first observation to use as the starting point for the forecast. Default is len(resids).
- **horizon** [int] Forecast horizon. Must be 1 or larger. Forecasts are produced for horizons in [1, horizon].
- **method** ["analytic", "simulation", "bootstrap"] Method to use when producing the forecast. The default is analytic.
- **simulations** [int] Number of simulations to run when computing the forecast using either simulation or bootstrap.
- **rng** [callable] Callable random number generator required if method is ‘simulation’. Must take a single shape input and return random samples numbers with that shape.
- **random_state** [RandomState, optional] NumPy RandomState instance to use when method is ‘bootstrap’

**Returns**

- **forecasts** [VarianceForecast] Class containing the variance forecasts, and, if using simulation or bootstrap, the simulated paths.

**Raises**

- **NotImplementedError** • If method is not supported
- **ValueError** • If the method is not known

**Notes**

The analytic method is not supported for all models. Attempting to use this method when not available will raise a ValueError.

**Return type** VarianceForecast
**arch.univariate.volatility.VolatilityProcess.parameter_names**

VolatilityProcess.parameter_names(self) → List[str]

Names of model parameters

**Returns**

- **names** [list (str)] Variables names

**Return type** List[str]

**arch.univariate.volatility.VolatilityProcess.simulate**

VolatilityProcess.simulate(self, parameters: Union[Sequence[Union[int, float]], numpy.ndarray, pandas.core.series.Series], nobs: int, rng: Callable[[Union[int, Tuple[int, ...]]], numpy.ndarray], burn: int = 500, initial_value: Union[float, NoneType] = None) → Tuple[numpy.ndarray, numpy.ndarray]

Simulate data from the model

**Parameters**

- **parameters** [{ndarray, Series}] Parameters required to simulate the volatility model
- **nobs** [int] Number of data points to simulate
- **rng** [callable] Callable function that takes a single integer input and returns a vector of random numbers
- **burn** [int, optional] Number of additional observations to generate when initializing the simulation
- **initial_value** [{float, ndarray}, optional] Scalar or array of initial values to use when initializing the simulation

**Returns**

- **resids** [ndarray] The simulated residuals
- **variance** [ndarray] The simulated variance

**Return type** Tuple[ndarray, ndarray]

**arch.univariate.volatility.VolatilityProcess.starting_values**

VolatilityProcess.starting_values(self, resids: numpy.ndarray) → numpy.ndarray

Returns starting values for the ARCH model

**Parameters**

- **resids** [ndarray] Array of (approximate) residuals to use when computing starting values

**Returns**

- **sv** [ndarray] Array of starting values

**Return type** ndarray
arch.univariate.volatility.VolatilityProcess.variance_bounds

VolatilityProcess.variance_bounds(self, resids: numpy.ndarray, power: float = 2.0) \rightarrow numpy.ndarray

Construct loose bounds for conditional variances.

These bounds are used in parameter estimation to ensure that the log-likelihood does not produce NaN values.

Parameters

- **resids** [ndarray] Approximate residuals to use to compute the lower and upper bounds on the conditional variance
- **power** [float, optional] Power used in the model. 2.0, the default corresponds to standard ARCH models that evolve in squares.

Returns

- **var_bounds** [ndarray] Array containing columns of lower and upper bounds with the same number of elements as resids

Return type ndarray

Properties

<table>
<thead>
<tr>
<th>name</th>
<th>The name of the volatility process</th>
</tr>
</thead>
<tbody>
<tr>
<td>start</td>
<td>Index to use to start variance subarray selection</td>
</tr>
<tr>
<td>stop</td>
<td>Index to use to stop variance subarray selection</td>
</tr>
</tbody>
</table>

arch.univariate.volatility.VolatilityProcess.name

VolatilityProcess.name

The name of the volatility process

Return type str

arch.univariate.volatility.VolatilityProcess.start

VolatilityProcess.start

Index to use to start variance subarray selection

Return type int

arch.univariate.volatility.VolatilityProcess.stop

VolatilityProcess.stop

Index to use to stop variance subarray selection

Return type int
1.9 Using the Fixed Variance process

The FixedVariance volatility process can be used to implement zig-zag model estimation where two steps are repeated until convergence. This can be used to estimate models which may not be easy to estimate as a single process due to numerical issues or a high-dimensional parameter space.

This setup code is required to run in an IPython notebook

```
[1]:
import warnings
warnings.simplefilter('ignore')

%matplotlib inline
import matplotlib.pyplot as plt
import seaborn
seaborn.set_style('darkgrid')
plt.rc("figure", figsize=(16, 6))
plt.rc("savefig", dpi=90)
plt.rc("font",family="sans-serif")
plt.rc("font",size=14)
```

1.9.1 Setup

Imports used in this example.

```
[2]:
import datetime as dt
import numpy as np
```

Data

The VIX index will be used to illustrate the use of the FixedVariance process. The data is from FRED and is provided by the arch package.

```
[3]:
import arch.data.vix
vix_data = arch.data.vix.load()
vix = vix_data.vix.dropna()
vix.name = 'VIX Index'
ax = vix.plot(title='VIX Index')
```
**Initial Mean Model Estimation**

The first step is to estimate the mean to filter the residuals using a constant variance.

```python
from arch.univariate.mean import HARX, ZeroMean
from arch.univariate.volatility import GARCH, FixedVariance

mod = HARX(vix, lags=[1, 5, 22])
res = mod.fit()
print(res.summary())
```

```
HAR - Constant Variance Model Results
===
Dep. Variable: VIX Index R-squared: 0.876
Mean Model: HAR Adj. R-squared: 0.876
Vol Model: Constant Variance Log-Likelihood: -2267.95
Distribution: Normal AIC: 4545.90
Method: Maximum Likelihood BIC: 4571.50
 No. Observations: 1237
Date: Wed, Jan 29 2020 Df Residuals: 1232
Time: 18:15:35 Df Model: 5
Mean Model
===
coef std err t P>|t| 95.0% Conf. Int.
--
Const 0.6335 0.189 3.359 7.831e-04 [0.264, 1.003]
VIX Index[0:1] 0.9287 6.589e-02 14.095 4.056e-45 [0.800, 1.058]
VIX Index[0:5] -0.0318 6.449e-02 -0.492 0.622 [-0.158, 9.463e-02]
VIX Index[0:22] 0.0612 3.180e-02 1.926 5.409e-02 [-1.076e-03, 0.124]
Volatility Model
===
coef std err t P>|t| 95.0% Conf. Int.
--
sigma2 2.2910 0.396 5.782 7.361e-09 [1.514, 3.068]
```

Covariance estimator: White’s Heteroskedasticity Consistent Estimator

---

1.9. Using the Fixed Variance process

145
Initial Volatility Model Estimation

Using the previously estimated residuals, a volatility model can be estimated using a `ZeroMean`. In this example, a GJR-GARCH process is used for the variance.

```python
[5]: vol_mod = ZeroMean(res.resid.dropna(), volatility=GARCH(p=1, o=1, q=1))
vol_res = vol_mod.fit(disp='off')
print(vol_res.summary())
```

```
Zero Mean - GJR-GARCH Model Results
==
Dep. Variable: resid R-squared: 0.000
Mean Model: Zero Mean Adj. R-squared: 0.001
Vol Model: GJR-GARCH Log-Likelihood: -1936.93
Distribution: Normal AIC: 3881.86
Method: Maximum Likelihood BIC: 3902.35
No. Observations: 1237 Date: Wed, Jan 29 2020
Time: 18:15:36 Df Residuals: 1233
Df Model: 4 Volatility Model
===

coef std err t P>|t| 95.0% Conf. Int.

omega 0.2355 0.1134e-02 2.578 9.932e-03 [5.647e-02, 0.415]
alpha[1] 0.7217 0.37401 1.931 5.353e-02 [-1.098e-02, 1.454]
gamma[1] -0.7217 0.25201 -2.859 4.255e-03 [-1.217, -0.227]
beta[1] 0.5789 0.18401 3.140 1.692e-03 [0.218, 0.940]
===
Covariance estimator: robust
```

Re-estimating the mean with a `FixedVariance`

The `FixedVariance` requires that the variance is provided when initializing the object. The variance provided should have the same shape as the original data. Since the variance estimated from the GJR-GARCH model is missing the first 22 observations due to the HAR lags, we simply fill these with 1. These values will not be used to estimate the model, and so the value is not important.
The summary shows that there is a single parameter, `scale`, which is close to 1. The mean parameters have changed which reflects the GLS-like weighting that this re-estimation imposes.

```python
[7]:
 variance = np.empty_like(vix)
 variance.fill(1.0)
 variance[22:] = vol_res.conditional_volatility**2.0
 fv = FixedVariance(variance)
 mod = HARX(vix, lags=[1, 5, 22], volatility=fv)
 res = mod.fit()
 print(res.summary())
```

```
Iteration: 2, Func. Count: 20, Neg. LLF: 1936.2884244078432
Iteration: 3, Func. Count: 30, Neg. LLF: 1936.173303940313
Iteration: 8, Func. Count: 72, Neg. LLF: 1935.9470521933054
Optimization terminated successfully. (Exit mode 0)
 Current function value: 1935.947051582333
 Iterations: 8
 Function evaluations: 73
 Gradient evaluations: 8

HAR - Fixed Variance Model Results
==
Dep. Variable: VIX Index R-squared: 0.876
Mean Model: HAR Adj. R-squared: 0.876
Vol Model: Fixed Variance Log-Likelihood: -1935.95
Distribution: Normal AIC: 3881.89
Method: Maximum Likelihood BIC: 3907.50
No. Observations: 1237
Date: Wed, Jan 29 2020 Df Residuals: 1232
Time: 18:15:37 Df Model: 5
Mean Model
==

| coef | std err | t | P>|t| | 95.0% Conf. Int. |
|-------|---------|------|------|------------------|
| Const | 0.5584 | 0.153| 3.661| 2.507e-04 | [0.260, 0.857] |
| VIX Index[0:1] | 0.9376 | 3.625e-02 | 25.866 | 1.607e-147 | [0.867, 1.009] |
| VIX Index[0:5] | -0.0249 | 3.782e-02 | -0.657 | 0.511 [-9.899e-02, 4.926e-02] |
| VIX Index[0:22] | 0.0493 | 2.102e-02 | 2.344 | 1.909e-02 [8.064e-03, 9.044e-02] |
Volatility Model
==

| coef | std err | t | P>|t| | 95.0% Conf. Int. |
|-------|---------|------|------|------------------|
| scale | 0.9986 | 8.081e-02 | 12.358 | 4.420e-35 [0.840, 1.157] |
```

**Zig-Zag estimation**

A small repetitions of the previous two steps can be used to implement a so-called zig-zag estimation strategy.

```python
[8]:
 for i in range(5):
 print(i)
```

(continues on next page)

1.9. Using the Fixed Variance process
vol_mod = ZeroMean(res.resid.dropna(), volatility=GARCH(p=1, o=1, q=1))
vol_res = vol_mod.fit(disp='off')
variance[22:] = vol_res.conditional_volatility**2.0
fv = FixedVariance(variance, unit_scale=True)
mod = HARX(vix, lags=[1, 5, 22], volatility=fv)
res = mod.fit(disp='off')

print(res.summary())

HAR - Fixed Variance (Unit Scale) Model Results
================================================================================================
Dep. Variable: VIX Index R-squared: 0.
Mean Model: HAR Adj. R-squared: 0.
Distribution: Normal AIC: 3879.
Method: Maximum Likelihood BIC: 3899.

No. Observations: 1237
Date: Wed, Jan 29 2020 Df Residuals: 1233
Time: 18:15:37 Df Model: 4

Mean Model

| coef   | std err | t     | P>|t|  | 95.0% Conf. Int. |
|--------|---------|-------|------|----------------------------|
| Const  | 0.5602  | 0.152 | 3.681| 2.323e-04                  |
| VIX Index[0:1] | 0.9381 | 3.616e-02 | 25.940| 2.388e-148                 |
| VIX Index[0:5] | -0.0262 | 3.774e-02 | -0.693| 0.488                      |
| VIX Index[0:22] | 0.0499 | 2.099e-02 | 2.380 | 1.733e-02 [8.810e-03, 9.109e-02] |

Covariance estimator: robust

Direct Estimation

This model can be directly estimated. The results are provided for comparison to the previous FixedVariance estimates of the mean parameters.

mod = HARX(vix, lags=[1, 5, 22], volatility=GARCH(1, 1, 1))
res = mod.fit(disp='off')
print(res.summary())

HAR - GJR-GARCH Model Results
================================================================================================
Dep. Variable: VIX Index R-squared: 0.876
Mean Model: HAR Adj. R-squared: 0.875
Distribution: Normal  AIC: 3881.23
Method: Maximum Likelihood  BIC: 3922.19
No. Observations: 1237
Date: Wed, Jan 29 2020  Df Residuals: 1229
Time: 18:15:38  Df Model: 8

Mean Model

| coef  | std err | t     | P>|t|  | 95.0% Conf. Int. |
|-------|---------|-------|------|-----------------|
| Const | 0.7796  | 1.190 | 0.655| 0.513           |
|       |         |       |      | [-1.554, 3.113]|
| VIX Index[0:1] | 0.9180 | 0.291 | 3.156| 1.597e-03       |
|       |         |       |      | [0.348, 1.488]  |
| VIX Index[0:5] | -0.0393| 0.296 | -0.133| 0.894          |
|       |         |       |      | [-0.620, 0.541] |
| VIX Index[0:22] | 0.0632 | 6.35e-02 | 0.994| 0.320          |
|       |         |       |      | [-6.136e-02, 0.188] |

Volatility Model

| coef  | std err | t    | P>|t|  | 95.0% Conf. Int. |
|-------|---------|------|------|-----------------|
| omega | 0.2357  | 0.250| 0.944| 0.345           |
|       |         |      |      | [-0.254, 0.725] |
| alpha[1]| 0.7091 | 1.069| 0.664| 0.507           |
| gamma[1]| -0.7091| 0.519| -1.367| 0.172          |
| beta[1]| 0.5579  | 0.855| 0.653| 0.514           |
|       |         |      |      | [-1.117, 2.233] |

Covariance estimator: robust

1.10 Distributions

A distribution is the final component of an ARCH Model.

<table>
<thead>
<tr>
<th>Normal([random_state])</th>
<th>Standard normal distribution for use with ARCH models</th>
</tr>
</thead>
<tbody>
<tr>
<td>StudentsT([random_state])</td>
<td>Standardized Student’s distribution for use with ARCH models</td>
</tr>
<tr>
<td>SkewStudent([random_state])</td>
<td>Standardized Skewed Student’s distribution for use with ARCH models</td>
</tr>
<tr>
<td>GeneralizedError([random_state])</td>
<td>Generalized Error distribution for use with ARCH models</td>
</tr>
</tbody>
</table>

1.10.1 arch.univariate.Normal

class arch.univariate.Normal(random_state=None)
Standard normal distribution for use with ARCH models

Methods

<table>
<thead>
<tr>
<th>bounds(self, resids)</th>
<th>Parameter bounds for use in optimization.</th>
</tr>
</thead>
<tbody>
<tr>
<td>cdf(self, resids, numpy.ndarray,...)</td>
<td>Cumulative distribution function</td>
</tr>
<tr>
<td>constraints(self)</td>
<td>Construct arrays to use in constrained optimization.</td>
</tr>
</tbody>
</table>

Continued on next page
Table 42 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>loglikelihood(self, parameters, ...)</td>
<td>Computes the log-likelihood of assuming residuals are normally distributed, conditional on the variance</td>
</tr>
<tr>
<td>moment(self, n, parameters, numpy.ndarray, ...)</td>
<td>Moment of order n</td>
</tr>
<tr>
<td>parameter_names(self)</td>
<td>Names of distribution shape parameters</td>
</tr>
<tr>
<td>partial_moment(self, n, z, parameters, ...)</td>
<td>Order n lower partial moment from -inf to z</td>
</tr>
<tr>
<td>ppf(self, pits, numpy.ndarray, ...)</td>
<td>Inverse cumulative density function (ICDF)</td>
</tr>
<tr>
<td>simulate(self, parameters, float, ...)</td>
<td>Simulates i.i.d.</td>
</tr>
<tr>
<td>starting_values(self, std_resid, ...)</td>
<td>Construct starting values for use in optimization.</td>
</tr>
</tbody>
</table>

arch.univariate.Normal.bounds

Normal.bounds(self, resids: numpy.ndarray) \to List[Tuple[float, float]]

Parameter bounds for use in optimization.

**Parameters**

resids [ndarray] Residuals to use when computing the bounds

**Returns**

bounds [list] List containing a single tuple with (lower, upper) bounds

**Return type** List[Tuple[float, float]]

arch.univariate.Normal.cdf

Normal.cdf(self, resids: Union[Sequence[float], numpy.ndarray, pandas.core.series.Series], parameters: Union[Sequence[float], numpy.ndarray, pandas.core.series.Series, NoneType] = None) \to numpy.ndarray

Cumulative distribution function

**Parameters**

resids [ndarray] Values at which to evaluate the cdf

parameters [ndarray] Distribution parameters. Use None for parameterless distributions.

**Returns**

f [ndarray] CDF values

**Return type** ndarray

arch.univariate.Normal.constraints

Normal.constraints(self) \to Tuple[numpy.ndarray, numpy.ndarray]

Construct arrays to use in constrained optimization.

**Returns**

A [ndarray] Constraint loadings

b [ndarray] Constraint values
Notes

Parameters satisfy the constraints $A \cdot \text{parameters} - b \geq 0$

Return type `Tuple[ndarray, ndarray]`

**arch.univariate.Normal.loglikelihood**

```python
Normal.loglikelihood(self, parameters: Union[Sequence[float], numpy.ndarray, pandas.core.series.Series], resids: Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series], sigma2: Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series], individual: bool = False) \to Union[float, numpy.ndarray]
```

Computes the log-likelihood of assuming residuals are normally distributed, conditional on the variance

Parameters

- **parameters** [ndarray] The normal likelihood has no shape parameters. Empty since the standard normal has no shape parameters.
- **resids** [ndarray] The residuals to use in the log-likelihood calculation
- **sigma2** [ndarray] Conditional variances of resids
- **individual** [bool, optional] Flag indicating whether to return the vector of individual log likelihoods (True) or the sum (False)

Returns

- **ll** [float] The log-likelihood

Notes

The log-likelihood of a single data point $x$ is

$$
\ln f(x) = -\frac{1}{2} \left( \ln 2\pi + \ln \sigma^2 + \frac{x^2}{\sigma^2} \right)
$$

Return type `Union[float, ndarray]`

**arch.univariate.Normal.moment**

```python
Normal.moment(self, n: int, parameters: Union[Sequence[float], numpy.ndarray, pandas.core.series.Series, NoneType] = None) \to float
```

Moment of order $n$

Parameters

- **n** [int] Order of moment
- **parameters** [ndarray, optional] Distribution parameters. Use None for parameterless distributions.

Returns

- **float** Calculated moment

Return type `float`
arch.univariate.Normal.parameter_names

Normal.parameter_names(self) → List[str]

Names of distribution shape parameters

Returns

names [list (str)] Parameter names

Return type List[str]

arch.univariate.Normal.partial_moment

Normal.partial_moment(self, n: int, z: float = 0.0, parameters: Union[Sequence[float], numpy.ndarray, pandas.core.series.Series, NoneType] = None) → float

Order n lower partial moment from -inf to z

Parameters

n [int] Order of partial moment

z [float, optional] Upper bound for partial moment integral

parameters [ndarray, optional] Distribution parameters. Use None for parameterless distributions.

Returns

float Partial moment

Notes

The order n lower partial moment to z is

\[\int_{-\infty}^{z} x^n f(x)dx\]

See [Rb607f043b759-1] for more details.

References

[Rb607f043b759-1]

Return type float

arch.univariate.Normal.ppf

Normal.ppf(self, pits: Union[Sequence[float], numpy.ndarray, pandas.core.series.Series], parameters: Union[Sequence[float], numpy.ndarray, pandas.core.series.Series, NoneType] = None) → numpy.ndarray

Inverse cumulative density function (ICDF)

Parameters

pits [ndarray] Probability-integral-transformed values in the interval (0, 1).

parameters [ndarray, optional] Distribution parameters. Use None for parameterless distributions.
Returns

   i [ndarray] Inverse CDF values

Return type ndarray

arch.univariate.Normal.simulate

Normal.simulate(self, parameters: Union[int, float, Sequence[Union[int, float]], numpy.ndarray, pandas.core.series.Series]) → Callable[[Union[int, Tuple[int, ...]], numpy.ndarray],
Simulates i.i.d. draws from the distribution

Parameters

   parameters [ndarray] Distribution parameters

Returns

   simulator [callable] Callable that take a single output size argument and returns i.i.d. draws from the distribution

Return type Callable[[Union[int, Tuple[int, ...]], ndarray]

arch.univariate.Normal.starting_values

Normal.starting_values(self, std_resid: Union[numpy.ndarray, pandas.core.series.Series]) → numpy.ndarray
Construct starting values for use in optimization.

Parameters

   std_resid [ndarray] Estimated standardized residuals to use in computing starting values for the shape parameter

Returns

   sv [ndarray] The estimated shape parameters for the distribution

Notes

Size of sv depends on the distribution

Return type ndarray

Properties

<table>
<thead>
<tr>
<th>name</th>
<th>The name of the distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>random_state</td>
<td>The NumPy RandomState attached to the distribution</td>
</tr>
</tbody>
</table>

arch.univariate.Normal.name

Normal.name

The name of the distribution
Return type  

`str`

**arch.univariate.Normal.random_state**

Normal.random_state

The NumPy RandomState attached to the distribution

**Return type**  

RandomState

### 1.10.2 arch.univariate.StudentsT

**class**  

**arch.univariate.StudentsT**(random_state=None)

Standardized Student’s distribution for use with ARCH models

**Methods**

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bounds(self, resids)</code></td>
<td>Parameter bounds for use in optimization.</td>
</tr>
<tr>
<td><code>cdf(self, resids, numpy.ndarray, ...)</code></td>
<td>Cumulative distribution function</td>
</tr>
<tr>
<td><code>constraints(self)</code></td>
<td>Construct arrays to use in constrained optimization.</td>
</tr>
<tr>
<td><code>loglikelihood(self, parameters, ...)</code></td>
<td>Computes the log-likelihood of assuming residuals are have a standardized (to have unit variance) Student’s t distribution, conditional on the variance.</td>
</tr>
<tr>
<td><code>moment(self, n, parameters, numpy.ndarray, ...)</code></td>
<td>Moment of order n</td>
</tr>
<tr>
<td><code>parameter_names(self)</code></td>
<td>Names of distribution shape parameters</td>
</tr>
<tr>
<td><code>partial_moment(self, n, z, parameters, ...)</code></td>
<td>Order n lower partial moment from -inf to z</td>
</tr>
<tr>
<td><code>ppf(self, pits, numpy.ndarray, ...)</code></td>
<td>Inverse cumulative density function (ICDF)</td>
</tr>
<tr>
<td><code>simulate(self, parameters, float, ...)</code></td>
<td>Simulates i.i.d.</td>
</tr>
<tr>
<td><code>starting_values(self, std_resid, ...)</code></td>
<td>Construct starting values for use in optimization.</td>
</tr>
</tbody>
</table>

**arch.univariate.StudentsT.bounds**

StudentsT.bounds(self, resids: numpy.ndarray) → List[Tuple[float, float]]

Parameter bounds for use in optimization.

**Parameters**

resids [ndarray] Residuals to use when computing the bounds

**Returns**

bounds [list] List containing a single tuple with (lower, upper) bounds

**Return type**  

List[Tuple[float, float]]

**arch.univariate.StudentsT.cdf**

StudentsT.cdf (self, resids: Union[Sequence[float], numpy.ndarray, pandas.core.series.Series], parameters: Union[Sequence[float], numpy.ndarray, pandas.core.series.Series, None-Type] = None) → numpy.ndarray

Cumulative distribution function

**Parameters**
resids [ndarray] Values at which to evaluate the cdf

parameters [ndarray] Distribution parameters. Use None for parameterless distributions.

Returns
f [ndarray] CDF values

Return type ndarray

arch.univariate.StudentsT.constraints

StudentsT.constraints(self) → Tuple[numpy.ndarray, numpy.ndarray]
Construct arrays to use in constrained optimization.

Returns
A [ndarray] Constraint loadings
b [ndarray] Constraint values

Notes
Parameters satisfy the constraints A.dot(parameters)-b >= 0

Return type Tuple[ndarray, ndarray]

arch.univariate.StudentsT.loglikelihood

Computes the log-likelihood of assuming residuals are have a standardized (to have unit variance) Student’s t distribution, conditional on the variance.

Parameters
parameters [ndarray] Shape parameter of the t distribution
resids [ndarray] The residuals to use in the log-likelihood calculation
sigma2 [ndarray] Conditional variances of resids
individual [bool, optional] Flag indicating whether to return the vector of individual log likelihoods (True) or the sum (False)

Returns
ll [float] The log-likelihood

Notes
The log-likelihood of a single data point x is

\[
\ln \Gamma \left( \frac{\nu + 1}{2} \right) - \ln \Gamma \left( \frac{\nu}{2} \right) - \frac{1}{2} \ln(\pi (\nu - 2) \sigma^2) - \frac{\nu + 1}{2} \ln \left( 1 + \frac{x^2}{\sigma^2(\nu - 2)} \right)
\]
where $\Gamma$ is the gamma function.

**Return type** `Union[float, ndarray]`

### arch.univariate.StudentsT.moment

`StudentsT.moment(self, n: int, parameters: Union[Sequence[float], numpy.ndarray, pandas.core.series.Series, NoneType] = None) → float`

Moment of order $n$

**Parameters**

- **n** [int] Order of moment
- **parameters** [ndarray, optional] Distribution parameters. Use None for parameterless distributions.

**Returns**

- **float** Calculated moment

**Return type** `float`

### arch.univariate.StudentsT.parameter_names

`StudentsT.parameter_names(self) → List[str]`

Names of distribution shape parameters

**Returns**

- **names** [list (str)] Parameter names

**Return type** `List[str]`

### arch.univariate.StudentsT.partial_moment

`StudentsT.partial_moment(self, n: int, z: float = 0.0, parameters: Union[Sequence[float], numpy.ndarray, pandas.core.series.Series, NoneType] = None) → float`

Order $n$ lower partial moment from $-\infty$ to $z$

**Parameters**

- **n** [int] Order of partial moment
- **z** [float, optional] Upper bound for partial moment integral
- **parameters** [ndarray, optional] Distribution parameters. Use None for parameterless distributions.

**Returns**

- **float** Partial moment
Notes

The order $n$ lower partial moment to $z$ is

$$\int_{-\infty}^{z} x^n f(x) dx$$

See [R89d8679f133d-1] for more details.

References

[R89d8679f133d-1]

Return type float

**arch.univariate.StudentsT.ppf**

```python
StudentsT.ppf(self, pits: Union[Sequence[float], numpy.ndarray, pandas.core.series.Series], parameters: Union[Sequence[float], numpy.ndarray, pandas.core.series.Series, None-Type] = None) → numpy.ndarray
```

Inverse cumulative density function (ICDF)

**Parameters**

- **pits** [ndarray] Probability-integral-transformed values in the interval $(0, 1)$.
- **parameters** [ndarray, optional] Distribution parameters. Use None for parameterless distributions.

**Returns**

- **i** [ndarray] Inverse CDF values

Return type ndarray

**arch.univariate.StudentsT.simulate**

```python
StudentsT.simulate(self, parameters: Union[int, float, Sequence[Union[int, float]], numpy.ndarray, pandas.core.series.Series]) → Callable[[Union[int, Tuple[int, ...]]], numpy.ndarray]
```

Simulates i.i.d. draws from the distribution

**Parameters**

- **parameters** [ndarray] Distribution parameters

**Returns**

- **simulator** [callable] Callable that take a single output size argument and returns i.i.d. draws from the distribution

Return type Callable[[Union[int, Tuple[int, ...]]], ndarray]
arch.univariate.StudentsT.starting_values

StudentsT.starting_values(self, std_resid: Union[numpy.ndarray, pandas.core.series.Series]) → numpy.ndarray

Construct starting values for use in optimization.

Parameters

std_resid [ndarray] Estimated standardized residuals to use in computing starting values for the shape parameter

Returns

sv [ndarray] Array containing starting value for shape parameter

Notes

Uses relationship between kurtosis and degree of freedom parameter to produce a moment-based estimator for the starting values.

Return type ndarray

Properties

<table>
<thead>
<tr>
<th>name</th>
<th>The name of the distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>random_state</td>
<td>The NumPy RandomState attached to the distribution</td>
</tr>
</tbody>
</table>

arch.univariate.StudentsT.name

StudentsT.name

The name of the distribution

Return type str

arch.univariate.StudentsT.random_state

StudentsT.random_state

The NumPy RandomState attached to the distribution

Return type RandomState

1.10.3 arch.univariate.SkewStudent

class arch.univariate.SkewStudent (random_state=None)

Standardized Skewed Student’s distribution for use with ARCH models

Notes

The Standardized Skewed Student’s distribution ([R300978c4850e-1]) takes two parameters, $\eta$ and $\lambda$. $\eta$ controls the tail shape and is similar to the shape parameter in a Standardized Student’s t. $\lambda$ controls the skewness. When $\lambda = 0$ the distribution is identical to a standardized Student’s t.
References

[R300978c4850e-1]

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>bounds(self, resids)</code></td>
<td>Parameter bounds for use in optimization.</td>
</tr>
<tr>
<td><code>cdf(self, resids, ...)</code></td>
<td>Cumulative distribution function.</td>
</tr>
<tr>
<td><code>constraints(self)</code></td>
<td>Construct arrays to use in constrained optimization.</td>
</tr>
<tr>
<td><code>loglikelihood(self, parameters, ...)</code></td>
<td>Computes the log-likelihood of assuming residuals have a standardized (to have unit variance) Skew Student’s t distribution, conditional on the variance.</td>
</tr>
<tr>
<td><code>moment(self, n, parameters, numpy.ndarray, ...)</code></td>
<td>Moment of order n</td>
</tr>
<tr>
<td><code>parameter_names(self)</code></td>
<td>Names of distribution shape parameters</td>
</tr>
<tr>
<td><code>partial_moment(self, n, z, parameters, ...)</code></td>
<td>Order n lower partial moment from -inf to z</td>
</tr>
<tr>
<td><code>ppf(self, pits, numpy.ndarray, ...)</code></td>
<td>Inverse cumulative density function (ICDF)</td>
</tr>
<tr>
<td><code>simulate(self, parameters, float, ...)</code></td>
<td>Simulates i.i.d.</td>
</tr>
<tr>
<td><code>starting_values(self, std_resid, ...)</code></td>
<td>Construct starting values for use in optimization.</td>
</tr>
</tbody>
</table>

`arch.univariate.SkewStudent.bounds`

SkewStudent. bounds (self, resids: numpy.ndarray) → List[Tuple[float, float]]

Parameter bounds for use in optimization.

Parameters

- **resids** [ndarray] Residuals to use when computing the bounds

Returns

- **bounds** [list] List containing a single tuple with (lower, upper) bounds

Return type List[Tuple[float, float]]

`arch.univariate.SkewStudent.cdf`

SkewStudent. cdf (self, resids: Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series], parameters: Union[Sequence[float], numpy.ndarray, pandas.core.series.Series, NoneType] = None) → numpy.ndarray

Cumulative distribution function

Parameters

- **resids** [ndarray] Values at which to evaluate the cdf
- **parameters** [ndarray] Distribution parameters. Use None for parameterless distributions.

Returns

- **f** [ndarray] CDF values

Return type ndarray
arch.univariate.SkewStudent.constraints

SkewStudent.constraints(self) → Tuple[numpy.ndarray, numpy.ndarray]
Construct arrays to use in constrained optimization.

Returns

- A [ndarray] Constraint loadings
- b [ndarray] Constraint values

Notes

Parameters satisfy the constraints A.dot(parameters)-b >= 0

Return type Tuple[ndarray, ndarray]

arch.univariate.SkewStudent.loglikelihood

Computes the log-likelihood of assuming residuals are have a standardized (to have unit variance) Skew Student’s t distribution, conditional on the variance.

Parameters

- parameters [ndarray] Shape parameter of the skew-t distribution
- resids [ndarray] The residuals to use in the log-likelihood calculation
- sigma2 [ndarray] Conditional variances of resids
- individual [bool, optional] Flag indicating whether to return the vector of individual log likelihoods (True) or the sum (False)

Returns

- ll [float] The log-likelihood

Notes

The log-likelihood of a single data point x is

\[
\ln \left[ \frac{bc}{\sigma} \left( 1 + \frac{1}{\eta - 2} \left( \frac{a + bx/\sigma}{1 + sgn(x/\sigma + a/b)\lambda} \right)^2 \right)^{-(\eta+1)/2} \right],
\]

where \(2 < \eta < \infty\), and \(-1 < \lambda < 1\). The constants \(a, b, c\) are given by

\[
a = 4\lambda c \frac{\eta - 2}{\eta - 1}, \quad b^2 = 1 + 3\lambda^2 - a^2, \quad c = \frac{\Gamma \left( \frac{\eta+1}{2} \right)}{\sqrt{\pi(\eta - 2)\Gamma \left( \frac{\eta}{2} \right)}}.
\]

and \(\Gamma\) is the gamma function.

Return type ndarray
arch.univariate.SkewStudent.moment

```python
SkewStudent.moment(self, n: int, parameters: Union[Sequence[float], numpy.ndarray, pandas.core.series.Series, NoneType] = None) -> float
```

Moment of order n

**Parameters**

- **n** [int] Order of moment
- **parameters** [ndarray, optional] Distribution parameters. Use None for parameterless distributions.

**Returns**

- **float** Calculated moment

**Return type** float

arch.univariate.SkewStudent.parameter_names

```python
SkewStudent.parameter_names(self) -> List[str]
```

Names of distribution shape parameters

**Returns**

- **names** [list (str)] Parameter names

**Return type** List[str]

arch.univariate.SkewStudent.partial_moment

```python
SkewStudent.partial_moment(self, n: int, z: float = 0.0, parameters: Union[Sequence[float], numpy.ndarray, pandas.core.series.Series, NoneType] = None) -> float
```

Order n lower partial moment from -inf to z

**Parameters**

- **n** [int] Order of partial moment
- **z** [float, optional] Upper bound for partial moment integral
- **parameters** [ndarray, optional] Distribution parameters. Use None for parameterless distributions.

**Returns**

- **float** Partial moment

**Notes**

The order n lower partial moment to z is

\[ \int_{-\infty}^{z} x^n f(x) dx \]

See [R85f824807113-1] for more details.
References

[R85f824807113-1]

Return type float

arch.univariate.SkewStudent.ppf

SkewStudent.ppf(self, pits: Union[Sequence[float], numpy.ndarray, pandas.core.series.Series], parameters: Union[Sequence[float], numpy.ndarray, pandas.core.series.Series, NoneType] = None) → numpy.ndarray

Inverse cumulative density function (ICDF)

Parameters

pits [ndarray] Probability-integral-transformed values in the interval (0, 1).

parameters [ndarray, optional] Distribution parameters. Use None for parameterless distributions.

Returns

i [ndarray] Inverse CDF values

Return type ndarray

arch.univariate.SkewStudent.simulate

SkewStudent.simulate(self, parameters: Union[int, float, Sequence[Union[int, float]], numpy.ndarray, pandas.core.series.Series]) → Callable[[Union[int, Tuple[int, ...]]], numpy.ndarray]

Simulates i.i.d. draws from the distribution

Parameters

parameters [ndarray] Distribution parameters

Returns

simulator [callable] Callable that take a single output size argument and returns i.i.d. draws from the distribution

Return type Callable[[Union[int, Tuple[int, ...]]], ndarray]

arch.univariate.SkewStudent.starting_values

SkewStudent.starting_values(self, std_resid: Union[numpy.ndarray, pandas.core.series.Series]) → numpy.ndarray

Construct starting values for use in optimization.

Parameters

std_resid [ndarray] Estimated standardized residuals to use in computing starting values for the shape parameter

Returns

sv [ndarray] Array containing starting valuer for shape parameter
Notes

Uses relationship between kurtosis and degree of freedom parameter to produce a moment-based estimator for the starting values.

Return type ndarray

Properties

<table>
<thead>
<tr>
<th>name</th>
<th>The name of the distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>random_state</td>
<td>The NumPy RandomState attached to the distribution</td>
</tr>
</tbody>
</table>

arch.univariate.SkewStudent.name

SkewStudent.name

The name of the distribution

Return type str

arch.univariate.SkewStudent.random_state

SkewStudent.random_state

The NumPy RandomState attached to the distribution

Return type RandomState

1.10.4 arch.univariate.GeneralizedError

class arch.univariate.GeneralizedError(random_state=None)

Generalized Error distribution for use with ARCH models

Methods

<table>
<thead>
<tr>
<th>bounds</th>
<th>Parameter bounds for use in optimization.</th>
</tr>
</thead>
<tbody>
<tr>
<td>cdf</td>
<td>Cumulative distribution function</td>
</tr>
<tr>
<td>constraints</td>
<td>Construct arrays to use in constrained optimization.</td>
</tr>
<tr>
<td>loglikelihood</td>
<td>Computes the log-likelihood of assuming residuals are have a Generalized Error Distribution, conditional on the variance.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>moment</th>
<th>Moment of order n</th>
</tr>
</thead>
<tbody>
<tr>
<td>parameter_names</td>
<td>Names of distribution shape parameters</td>
</tr>
<tr>
<td>partial_moment</td>
<td>Order n lower partial moment from -inf to z</td>
</tr>
<tr>
<td>ppf</td>
<td>Inverse cumulative density function (ICDF)</td>
</tr>
<tr>
<td>simulate</td>
<td>Simulates i.i.d.</td>
</tr>
<tr>
<td>starting_values</td>
<td>Construct starting values for use in optimization.</td>
</tr>
</tbody>
</table>
arch.univariate.GeneralizedError.bounds

GeneralizedError.bounds (self, resids: numpy.ndarray) → List[Tuple[float, float]]
Parameter bounds for use in optimization.

Parameters
resids [ndarray] Residuals to use when computing the bounds

Returns
bounds [list] List containing a single tuple with (lower, upper) bounds

Return type List[Tuple[float, float]]

arch.univariate.GeneralizedError.cdf

GeneralizedError.cdf (self, resids: Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series], parameters: Union[Sequence[float], numpy.ndarray, pandas.core.series.Series, NoneType] = None) → numpy.ndarray
Cumulative distribution function

Parameters
resids [ndarray] Values at which to evaluate the cdf
parameters [ndarray] Distribution parameters. Use None for parameterless distributions.

Returns
f [ndarray] CDF values

Return type ndarray

arch.univariate.GeneralizedError.constraints

GeneralizedError.constraints (self) → Tuple[numpy.ndarray, numpy.ndarray]
Construct arrays to use in constrained optimization.

Returns
A [ndarray] Constraint loadings
b [ndarray] Constraint values

Notes
Parameters satisfy the constraints A.dot(parameters)-b >= 0

Return type Tuple[ndarray, ndarray]
arch.univariate.GeneralizedError.loglikelihood


Computes the log-likelihood of assuming residuals are have a Generalized Error Distribution, conditional on the variance.

**Parameters**

- **parameters** [ndarray] Shape parameter of the GED distribution
- **resids** [ndarray] The residuals to use in the log-likelihood calculation
- **sigma2** [ndarray] Conditional variances of resids
- **individual** [bool, optional] Flag indicating whether to return the vector of individual log likelihoods (True) or the sum (False)

**Returns**

- **ll** [float] The log-likelihood

**Notes**

The log-likelihood of a single data point $x$ is

$$
\ln \nu - \ln c - \ln \Gamma\left(\frac{1}{\nu}\right) + \left(1 + \frac{1}{\nu}\right) \ln 2 - \frac{1}{2} \ln \sigma^2 - \frac{1}{2} \left| \frac{x}{c\sigma} \right|\nu
$$

where $\Gamma$ is the gamma function and $\ln c$ is

$$
\ln c = \frac{1}{2} \left( -2 \nu \ln 2 + \ln \Gamma\left(\frac{1}{\nu}\right) - \ln \Gamma\left(\frac{3}{\nu}\right) \right).
$$

**Return type** ndarray

arch.univariate.GeneralizedError.moment

GeneralizedError.moment(self, n: int, parameters: Union[Sequence[float], numpy.ndarray, pandas.core.series.Series, NoneType] = None) → float

Moment of order $n$

**Parameters**

- **n** [int] Order of moment
- **parameters** [ndarray, optional] Distribution parameters. Use None for parameterless distributions.

**Returns**

- **float** Calculated moment

**Return type** float

1.10. Distributions
arch.univariate.GeneralizedError.parameter_names

GeneralizedError.parameter_names(self) → List[str]

Names of distribution shape parameters

Returns

names [list (str)] Parameter names

Return type List[str]

arch.univariate.GeneralizedError.partial_moment

GeneralizedError.partial_moment(self, n: int, z: float = 0.0, parameters: Union[Sequence[float], numpy.ndarray, pandas.core.series.Series, NoneType] = None) → float

Order n lower partial moment from -inf to z

Parameters

n [int] Order of partial moment

z [float, optional] Upper bound for partial moment integral

parameters [ndarray, optional] Distribution parameters. Use None for parameterless distributions.

Returns

float Partial moment

Notes

The order n lower partial moment to z is

\[ \int_{-\infty}^{z} x^n f(x)dx \]

See [Rdaf964e2cae0-1] for more details.

References

[Rdaf964e2cae0-1]

Return type float

arch.univariate.GeneralizedError.ppf

GeneralizedError.ppf(self, pits: Union[Sequence[float], numpy.ndarray, pandas.core.series.Series], parameters: Union[Sequence[float], numpy.ndarray, pandas.core.series.Series, NoneType] = None) → numpy.ndarray

Inverse cumulative density function (ICDF)

Parameters

pits [ndarray] Probability-integral-transformed values in the interval (0, 1).
parameters  [ndarray, optional] Distribution parameters. Use None for parameterless distributions.

Returns

i  [ndarray] Inverse CDF values

Return type  ndarray

arch.univariate.GeneralizedError.simulate

GeneralizedError.simulate (self, parameters: Union[int, float, Sequence[Union[int, float]], numpy.ndarray, pandas.core.series.Series])  →  Callable[[Union[int, Tuple[int, ...]]], numpy.ndarray]

Simulates i.i.d. draws from the distribution

Parameters

parameters  [ndarray] Distribution parameters

Returns

simulator  [callable] Callable that take a single output size argument and returns i.i.d. draws from the distribution

Return type  Callable[[Union[int, Tuple[int, ...]]], ndarray]

arch.univariate.GeneralizedError.starting_values

GeneralizedError.starting_values (self, std_resid: Union[numpy.ndarray, pandas.core.series.Series])  →  numpy.ndarray

Construct starting values for use in optimization.

Parameters

std_resid  [ndarray] Estimated standardized residuals to use in computing starting values for the shape parameter

Returns

sv  [ndarray] Array containing starting value for shape parameter

Notes

Defaults to 1.5 which is implies heavier tails than a normal

Return type  ndarray

Properties

name  The name of the distribution

random_state  The NumPy RandomState attached to the distribution
arch.univariate.GeneralizedError.name

GeneralizedError.name
The name of the distribution

Return type str

arch.univariate.GeneralizedError.random_state

GeneralizedError.random_state
The NumPy RandomState attached to the distribution

Return type RandomState

1.10.5 Writing New Distributions

All distributions must inherit from :class:Distribution and provide all public methods.

Distribution([random_state]) Template for subclassing only

arch.univariate.distribution.Distribution

class arch.univariate.distribution.Distribution(random_state=None)
Template for subclassing only

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bounds(self, resids)</td>
<td>Parameter bounds for use in optimization.</td>
</tr>
<tr>
<td>cdf(self, resids, numpy.ndarray,...)</td>
<td>Cumulative distribution function</td>
</tr>
<tr>
<td>constraints(self)</td>
<td>Construct arrays to use in constrained optimization.</td>
</tr>
<tr>
<td>loglikelihood(self, parameters,...)</td>
<td>Loglikelihood evaluation.</td>
</tr>
<tr>
<td>moment(self, n, parameters, numpy.ndarray,...)</td>
<td>Moment of order n</td>
</tr>
<tr>
<td>parameter_names(self)</td>
<td>Names of distribution shape parameters</td>
</tr>
<tr>
<td>partial_moment(self, n, z, parameters,...)</td>
<td>Order n lower partial moment from -inf to z</td>
</tr>
<tr>
<td>ppf(self, pits, numpy.ndarray,...)</td>
<td>Inverse cumulative density function (ICDF)</td>
</tr>
<tr>
<td>simulate(self, parameters, float,...)</td>
<td>Simulates i.i.d.</td>
</tr>
<tr>
<td>starting_values(self, std_resid)</td>
<td>Construct starting values for use in optimization.</td>
</tr>
</tbody>
</table>

arch.univariate.distribution.Distribution.bounds

Distribution.bounds(self, resids: numpy.ndarray) -> List[Tuple[float, float]]
Parameter bounds for use in optimization.

Parameters

resids [ndarray] Residuals to use when computing the bounds

Returns

bounds [list] List containing a single tuple with (lower, upper) bounds

Return type List[Tuple[float, float]]
arch.univariate.distribution.Distribution.cdf

```
Distribution.cdf(self, resids: Union[Sequence[float], numpy.ndarray, pandas.core.series.Series], parameters: Union[Sequence[float], numpy.ndarray, pandas.core.series.Series, NoneType] = None) → numpy.ndarray
```

Cumulative distribution function

**Parameters**
- `resids` [ndarray] Values at which to evaluate the cdf
- `parameters` [ndarray] Distribution parameters. Use `None` for parameterless distributions.

**Returns**
- `f` [ndarray] CDF values

**Return type** `ndarray`

arch.univariate.distribution.Distribution.constraints

```
Distribution.constraints(self) → Tuple[numpy.ndarray, numpy.ndarray]
```

Construct arrays to use in constrained optimization.

**Returns**
- `A` [ndarray] Constraint loadings
- `b` [ndarray] Constraint values

**Notes**

Parameters satisfy the constraints $A \cdot \text{parameters} - b \geq 0$

**Return type** `Tuple[ndarray, ndarray]`

arch.univariate.distribution.Distribution.loglikelihood

```
```

Loglikelihood evaluation.

**Parameters**
- `parameters` [ndarray] Distribution shape parameters
- `resids` [ndarray] nobs array of model residuals
- `sigma2` [ndarray] nobs array of conditional variances
- `individual` [bool, optional] Flag indicating whether to return the vector of individual log likelihoods (True) or the sum (False)
Notes

Returns the loglikelihood where resids are the “data”, and parameters and sigma2 are inputs.

**Return type** Union[float, ndarray]

**arch.univariate.distribution.Distribution.moment**

Distribution.moment(self, n: int, parameters: Union[Sequence[float], numpy.ndarray, pandas.core.series.Series, NoneType] = None) → float

Moment of order n

**Parameters**

- **n** [int] Order of moment
- **parameters** [ndarray, optional] Distribution parameters. Use None for parameterless distributions.

**Returns**

- **float** Calculated moment

**Return type** float

**arch.univariate.distribution.Distribution.parameter_names**

Distribution.parameter_names(self) → List[str]

Names of distribution shape parameters

**Returns**

- **names** [list (str)] Parameter names

**Return type** List[str]

**arch.univariate.distribution.Distribution.partial_moment**

Distribution.partial_moment(self, n: int, z: float = 0.0, parameters: Union[Sequence[float], numpy.ndarray, pandas.core.series.Series, NoneType] = None) → float

Order n lower partial moment from -inf to z

**Parameters**

- **n** [int] Order of partial moment
- **z** [float, optional] Upper bound for partial moment integral
- **parameters** [ndarray, optional] Distribution parameters. Use None for parameterless distributions.

**Returns**

- **float** Partial moment
Notes
The order $n$ lower partial moment to $z$ is

$$\int_{-\infty}^{z} x^n f(x) \, dx$$

See [R3fc6f626a72f-1] for more details.

References
[R3fc6f626a72f-1]

Return type float

arch.univariate.distribution.Distribution.ppf

Distribution.ppf(self, pits: Union[Sequence[float], numpy.ndarray, pandas.core.series.Series], parameters: Union[Sequence[float], numpy.ndarray, pandas.core.series.Series, NoneType] = None) → numpy.ndarray
Inverse cumulative density function (ICDF)

Parameters

- **pits** [ndarray] Probability-integral-transformed values in the interval (0, 1).
- **parameters** [ndarray, optional] Distribution parameters. Use None for parameterless distributions.

Returns

- **i** [ndarray] Inverse CDF values

Return type ndarray

arch.univariate.distribution.Distribution.simulate

Distribution.simulate(self, parameters: Union[int, float, Sequence[Union[int, float], numpy.ndarray, pandas.core.series.Series]]) → Callable[[Union[int, Tuple[int, ...]]], numpy.ndarray]
Simulates i.i.d. draws from the distribution

Parameters

- **parameters** [ndarray] Distribution parameters

Returns

- **simulator** [callable] Callable that take a single output size argument and returns i.i.d. draws from the distribution

Return type Callable[[Union[int, Tuple[int, ...]]], ndarray]
arch.univariate.distribution.Distribution.starting_values

Distribution.starting_values(self, std_resid: numpy.ndarray) \rightarrow numpy.ndarray
Construct starting values for use in optimization.

Parameters

std_resid [ndarray] Estimated standardized residuals to use in computing starting values for the shape parameter

Returns

sv [ndarray] The estimated shape parameters for the distribution

Notes

Size of sv depends on the distribution

Return type ndarray

Properties

<table>
<thead>
<tr>
<th>name</th>
<th>The name of the distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>random_state</td>
<td>The NumPy RandomState attached to the distribution</td>
</tr>
</tbody>
</table>

arch.univariate.distribution.Distribution.name

Distribution.name
The name of the distribution

Return type str

arch.univariate.distribution.Distribution.random_state

Distribution.random_state
The NumPy RandomState attached to the distribution

Return type RandomState

1.11 Model Results

All model return the same object, a results class (ARCHModelResult). When using the fix method, a (ARCHModelFixedResult) is produced that lacks some properties of a (ARCHModelResult) that are not relevant when parameters are not estimated.

ARCHModelResult(params, param_cov, r2, ...) Results from estimation of an ARCHModel model
ARCHModelFixedResult(params, resid, ...) Results for fixed parameters for an ARCHModel model
1.11.1 arch.univariate.base.ARCHModelResult

```python
class arch.univariate.base.ARCHModelResult (params, param_cov, r2, resid, volatility, cov_type, dep_var, names, loglikelihood, is_pandas, optim_output, fit_start, fit_stop, model)
```

Results from estimation of an ARCHModel model

**Parameters**

- **params** [ndarray] Estimated parameters
- **param_cov** [{ndarray, None}] Estimated variance-covariance matrix of params. If none, calls method to compute variance from model when parameter covariance is first used from result
- **r2** [float] Model R-squared
- **resid** [ndarray] Residuals from model. Residuals have same shape as original data and contain nan-values in locations not used in estimation
- **volatility** [ndarray] Conditional volatility from model
- **cov_type** [str] String describing the covariance estimator used
- **dep_var** [Series] Dependent variable
- **names** [list (str)] Model parameter names
- **loglikelihood** [float] Loglikelihood at estimated parameters
- **is_pandas** [bool] Whether the original input was pandas
- **optim_output** [OptimizeResult] Result of log-likelihood optimization
- **fit_start** [int] Integer index of the first observation used to fit the model
- **fit_stop** [int] Integer index of the last observation used to fit the model using slice notation
  ```python
 fit_start:fit_stop
  ```
- **model** [ARCHModel] The model object used to estimate the parameters

**Methods**

- **arch_lm_test**(self, lags, NoneType] = None, ...) → arch.univariate.base.ARCHModelResult
  ARCH LM test for conditional heteroskedasticity

- **conf_int**(self, alpha) → Parameter confidence intervals

- **forecast**(self, params, ...) → arch.univariate.base.ARCHModelResult
  Construct forecasts from estimated model

- **hedgehog_plot**(self, params, ...) → arch.univariate.base.ARCHModelResult
  Plot forecasts from estimated model

- **plot**(self, annualize, NoneType] = None, ...) → arch.univariate.base.ARCHModelResult
  Plot standardized residuals and conditional volatility

- **summary**(self) → arch.univariate.base.ARCHModelResult
  Constructs a summary of the results from a fit model.

**arch.univariate.base.ARCHModelResult.arch_lm_test**

```python
ARCHModelResult.arch_lm_test (self, lags: Union[int, NoneType] = None, standardized: bool = False) → arch.utility.testing.WaldTestStatistic
```

ARCH LM test for conditional heteroskedasticity

**Parameters**

- **lags** [int, optional] Number of lags to include in the model. If not specified,
standardized [bool, optional] Flag indicating to test the model residuals divided by their conditional standard deviations. If False, directly tests the estimated residuals.

Returns

result [WaldTestStatistic] Result of ARCH-LM test

Return type WaldTestStatistic

arch.univariate.base.ARCHModelResult.conf_int

ARCHModelResult.conf_int (self, alpha: float = 0.05) → pandas.core.frame.DataFrame
Parameter confidence intervals

Parameters

alpha [float, optional] Size (prob.) to use when constructing the confidence interval.

Returns

ci [DataFrame] Array where the ith row contains the confidence interval for the ith parameter

Return type DataFrame

arch.univariate.base.ARCHModelResult.forecast

Construct forecasts from estimated model

Parameters

params [ndarray, optional] Alternative parameters to use. If not provided, the parameters estimated when fitting the model are used. Must be identical in shape to the parameters computed by fitting the model.

horizon [int, optional] Number of steps to forecast

start [[int, datatime, Timestamp, str], optional] An integer, datatime or str indicating the first observation to produce the forecast for. Datetimes can only be used with pandas inputs that have a datetime index. Strings must be convertible to a date time, such as in ‘1945-01-01’.

align [str, optional] Either ‘origin’ or ‘target’. When set of ‘origin’, the t-th row of forecasts contains the forecasts for t+1, t+2, …, t+h. When set to ‘target’, the t-th row contains the 1-step ahead forecast from time t-1, the 2 step from time t-2, …, and the h-step from time t-h. ‘target’ simplified computing forecast errors since the realization and h-step forecast are aligned.

method [{'analytic’, ‘simulation’, ‘bootstrap’}, optional] Method to use when producing the forecast. The default is analytic. The method only affects the variance forecast generation. Not all volatility models support all methods. In particular, volatility models that do
not evolve in squares such as EGARCH or TARCH do not support the ‘analytic’ method for horizons > 1.

**simulations** [int, optional] Number of simulations to run when computing the forecast using either simulation or bootstrap.

**rng** [callable, optional] Custom random number generator to use in simulation-based forecasts. Must produce random samples using the syntax `rng(size)` where size the 2-element tuple (simulations, horizon).

**random_state** [RandomState, optional] NumPy RandomState instance to use when method is ‘bootstrap’

**Returns**

forecasts [ARCHModelForecast] t by h data frame containing the forecasts. The alignment of the forecasts is controlled by `align`.

**Notes**

The most basic 1-step ahead forecast will return a vector with the same length as the original data, where the t-th value will be the time-t forecast for time t + 1. When the horizon is > 1, and when using the default value for `align`, the forecast value in position [t, h] is the time-t, h+1 step ahead forecast.

If model contains exogenous variables (`model.x is not None`), then only 1-step ahead forecasts are available. Using horizon > 1 will produce a warning and all columns, except the first, will be nan-filled.

If `align` is ‘origin’, forecast[t,h] contains the forecast made using y[:t] (that is, up to but not including t) for horizon h+1. For example, y[100,2] contains the 3-step ahead forecast using the first 100 data points, which will correspond to the realization y[100 + 2]. If `align` is ‘target’, then the same forecast is in location [102, 2], so that it is aligned with the observation to use when evaluating, but still in the same column.

**Return type** ARCHModelForecast

### arch.univariate.base.ARCHModelResult.hedgehog_plot

**ARCHModelResult.hedgehog_plot**(self, **params**: Union[numpy.ndarray, pandas.core.series.Series, NoneType] = None, **horizon**: int = 10, **step**: int = 10, **start**: Union[int, str, datetime.datetime, numpy.datetime64, pandas._libs.tslibs.timestamps.Timestamp] = None, **plot_type**: str = 'volatility', **method**: str = 'analytic', **simulations**: int = 1000) → 'Figure'

Plot forecasts from estimated model

**Parameters**

- **params** [[ndarray, Series]] Alternative parameters to use. If not provided, the parameters computed by fitting the model are used. Must be 1-d and identical in shape to the parameters computed by fitting the model.
- **horizon** [int, optional] Number of steps to forecast
- **step** [int, optional] Non-negative number of forecasts to skip between spines
- **start** [int, datetime or str, optional] An integer, datetime or str indicating the first observation to produce the forecast for. Datetimes can only be used with pandas inputs that have a datetime index. Strings must be convertible to a date time, such as in ‘1945-01-01’. If not provided, the start is set to the earliest forecastable date.
plot_type [‘volatility’, ‘mean’] Quantity to plot, the forecast volatility or the forecast mean

method [‘analytic’, ‘simulation’, ‘bootstrap’] Method to use when producing the forecast. The default is analytic. The method only affects the variance forecast generation. Not all volatility models support all methods. In particular, volatility models that do not evolve in squares such as EGARCH or TARCH do not support the ‘analytic’ method for horizons > 1.

simulations [int] Number of simulations to run when computing the forecast using either simulation or bootstrap.

Returns

fig [figure] Handle to the figure

Examples

```python
>>> import pandas as pd
>>> from arch import arch_model
>>> am = arch_model(None, mean='HAR', lags=[1, 5, 22], vol='Constant')
>>> sim_data = am.simulate([0.1, 0.4, 0.3, 0.2, 1.0], 250)
>>> sim_data.index = pd.date_range('2000-01-01', periods=250)
>>> am = arch_model(sim_data['data'], mean='HAR', lags=[1, 5, 22], ...
 → vol='Constant')
>>> res = am.fit()
>>> fig = res.hedgehog_plot(plot_type='mean')
```

Return type Figure

arch.univariate.base.ARCHModelResult.plot

ARCHModelResult.plot(self, annualize: Union[str, NoneType] = None, scale: Union[float, NoneType] = None) → 'Figure'

Plot standardized residuals and conditional volatility

Parameters

annualize [str, optional] String containing frequency of data that indicates plot should contain annualized volatility. Supported values are ‘D’ (daily), ‘W’ (weekly) and ‘M’ (monthly), which scale variance by 252, 52, and 12, respectively.

scale [float, optional] Value to use when scaling returns to annualize. If scale is provided, annualize is ignored and the value in scale is used.

Returns

fig [figure] Handle to the figure

Examples

```python
>>> from arch import arch_model
>>> am = arch_model(None)
>>> sim_data = am.simulate([0.0, 0.01, 0.07, 0.92], 2520)
>>> am = arch_model(sim_data['data'])
```
Produce a plot with annualized volatility

```python
>>> fig = res.plot(annualize='D')
```

Override the usual scale of 252 to use 360 for an asset that trades most days of the year

```python
>>> fig = res.plot(scale=360)
```

**Return type** Figure

### `arch.univariate.base.ARCHModelResult.summary`

`ARCHModelResult.summary(self) → statsmodels.iolib.summary.Summary`

Constructs a summary of the results from a fit model.

**Returns**

- `summary` [Summary instance] Object that contains tables and facilitated export to text, html or latex

**Return type** Summary

**Properties**

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>aic</code></td>
<td>Akaike Information Criteria</td>
</tr>
<tr>
<td><code>bic</code></td>
<td>Schwarz/Bayesian Information Criteria</td>
</tr>
<tr>
<td><code>conditional_volatility</code></td>
<td>Estimated conditional volatility</td>
</tr>
<tr>
<td><code>convergence_flag</code></td>
<td>scipy.optimize.minimize result flag</td>
</tr>
<tr>
<td><code>fit_start</code></td>
<td>Start of sample used to estimate parameters</td>
</tr>
<tr>
<td><code>fit_stop</code></td>
<td>End of sample used to estimate parameters</td>
</tr>
<tr>
<td><code>loglikelihood</code></td>
<td>Model loglikelihood</td>
</tr>
<tr>
<td><code>model</code></td>
<td>Model instance used to produce the fit</td>
</tr>
<tr>
<td><code>nobs</code></td>
<td>Number of data points used to estimate model</td>
</tr>
<tr>
<td><code>num_params</code></td>
<td>Number of parameters in model</td>
</tr>
<tr>
<td><code>optimization_result</code></td>
<td>Information about the convergence of the loglikihood optimization</td>
</tr>
<tr>
<td><code>param_cov</code></td>
<td>Parameter covariance</td>
</tr>
<tr>
<td><code>params</code></td>
<td>Model Parameters</td>
</tr>
<tr>
<td><code>pvalues</code></td>
<td>Array of p-values for the t-statistics</td>
</tr>
<tr>
<td><code>resid</code></td>
<td>Model residuals</td>
</tr>
<tr>
<td><code>rsquared</code></td>
<td>R-squared</td>
</tr>
<tr>
<td><code>rsquared_adj</code></td>
<td>Degree of freedom adjusted R-squared</td>
</tr>
<tr>
<td><code>scale</code></td>
<td>The scale applied to the original data before estimating the model.</td>
</tr>
<tr>
<td><code>std_err</code></td>
<td>Array of parameter standard errors</td>
</tr>
<tr>
<td><code>std_resid</code></td>
<td>Residuals standardized by conditional volatility</td>
</tr>
</tbody>
</table>

Continued on next page
Table 55 – continued from previous page

<table>
<thead>
<tr>
<th>tvalues</th>
<th>Array of t-statistics testing the null that the coefficient are 0</th>
</tr>
</thead>
</table>

`arch.univariate.base.ARCHModelResult.aic`

**ARCHModelResult.aic**

Akaike Information Criteria

\[-2 \times \text{loglikelihood} + 2 \times \text{num_params}\]

`arch.univariate.base.ARCHModelResult.bic`

**ARCHModelResult.bic**

Schwarz/Bayesian Information Criteria

\[-2 \times \text{loglikelihood} + \log(\text{nobs}) \times \text{num_params}\]

`arch.univariate.base.ARCHModelResult.conditional_volatility`

**ARCHModelResult.conditional_volatility**

Estimated conditional volatility

**Returns**

`conditional_volatility` [[ndarray, Series]] nobs element array containing the conditional volatility (square root of conditional variance). The values are aligned with the input data so that the value in the t-th position is the variance of t-th error, which is computed using time-(t-1) information.

`arch.univariate.base.ARCHModelResult.convergence_flag`

**ARCHModelResult.convergence_flag**

scipy.optimize.minimize result flag

`arch.univariate.base.ARCHModelResult.fit_start`

**ARCHModelResult.fit_start**

Start of sample used to estimate parameters

`arch.univariate.base.ARCHModelResult.fit_stop`

**ARCHModelResult.fit_stop**

End of sample used to estimate parameters

`arch.univariate.base.ARCHModelResult.loglikelihood`

**ARCHModelResult.loglikelihood**

Model loglikelihood
arch.univariate.base.ARCHModelResult.model

ARCHModelResult.model
Model instance used to produce the fit

arch.univariate.base.ARCHModelResult.nobs

ARCHModelResult.nobs
Number of data points used to estimate model

arch.univariate.base.ARCHModelResult.num_params

ARCHModelResult.num_params
Number of parameters in model

arch.univariate.base.ARCHModelResult.optimization_result

ARCHModelResult.optimization_result
Information about the convergence of the loglikelihood optimization

Returns

optim_result [OptimizeResult] Result from numerical optimization of the log-likelihood.

Return type OptimizeResult

arch.univariate.base.ARCHModelResult.param_cov

ARCHModelResult.param_cov
Parameter covariance

arch.univariate.base.ARCHModelResult.params

ARCHModelResult.params
Model Parameters

arch.univariate.base.ARCHModelResult.pvalues

ARCHModelResult.pvalues
Array of p-values for the t-statistics

arch.univariate.base.ARCHModelResult.resid

ARCHModelResult.resid
Model residuals

arch.univariate.base.ARCHModelResult.rsquared

ARCHModelResult.rsquared
R-squared
arch.univariate.base.ARCHModelResult.rsquared_adj

ARCHModelResult.rsquared_adj
Degree of freedom adjusted R-squared

arch.univariate.base.ARCHModelResult.scale

ARCHModelResult.scale
The scale applied to the original data before estimating the model.
If scale=1.0, the the data have not been rescaled. Otherwise, the model parameters have been estimated on scale * y.

arch.univariate.base.ARCHModelResult.std_err

ARCHModelResult.std_err
Array of parameter standard errors

arch.univariate.base.ARCHModelResult.std_resid

ARCHModelResult.std_resid
Residuals standardized by conditional volatility

arch.univariate.base.ARCHModelResult.tvalues

ARCHModelResult.tvalues
Array of t-statistics testing the null that the coefficient are 0

1.11.2 arch.univariate.base.ARCHModelFixedResult

class arch.univariate.base.ARCHModelFixedResult (params, resid, volatility, dep_var, names, loglikelihood, is_pandas, model)

Results for fixed parameters for an ARCHModel model

Parameters

- params [ndarray] Estimated parameters
- resid [ndarray] Residuals from model. Residuals have same shape as original data and contain nan-values in locations not used in estimation
- volatility [ndarray] Conditional volatility from model
- dep_var [Series] Dependent variable
- names [list (str)] Model parameter names
- loglikelihood [float] Loglikelihood at specified parameters
- is_pandas [bool] Whether the original input was pandas
- model [ARCHModel] The model object used to estimate the parameters
Methods

**arch_lm_test**

```python
arch_lm_test(self, lags, NoneType] = None,
...)
```
ARCH LM test for conditional heteroskedasticity

**forecast**

```python
forecast(self, params, ...)
```
Construct forecasts from estimated model

**hedgehog_plot**

```python
hedgehog_plot(self, params, ...)
```
Plot forecasts from estimated model

**plot**

```python
plot(self, annualize, NoneType] = None, ...)
```
Plot standardized residuals and conditional volatility

**summary**

```python
summary(self)
```
Constructs a summary of the results from a fit model.

---

**arch.univariate.base.ARCHModelFixedResult.arch_lm_test**

```python
ARCHModelFixedResult.arch_lm_test(self, lags: Union[int, NoneType] = None,
standardized: bool = False) → arch.utility.testing.WaldTestStatistic
```

 ARCH LM test for conditional heteroskedasticity

**Parameters**

- **lags** [int, optional] Number of lags to include in the model. If not specified,

- **standardized** [bool, optional] Flag indicating to test the model residuals divided by their conditional standard deviations. If False, directly tests the estimated residuals.

**Returns**

- **result** [WaldTestStatistic] Result of ARCH-LM test

**Return type** *WaldTestStatistic*

---

**arch.univariate.base.ARCHModelFixedResult.forecast**

```python
ARCHModelFixedResult.forecast(self, params: Union[numpy.ndarray, pandas.core.series.Series, NoneType] = None, horizon: int = 1,
```

 Construct forecasts from estimated model

**Parameters**

- **params** [ndarray, optional] Alternative parameters to use. If not provided, the parameters estimated when fitting the model are used. Must be identical in shape to the parameters computed by fitting the model.

- **horizon** [int, optional] Number of steps to forecast

- **start** [[int, datetime, Timestamp, str], optional] An integer, datetime or str indicating the first observation to produce the forecast for. Datetimes can only be used with pandas inputs that have a datetime index. Strings must be convertible to a date time, such as in '1945-01-01'.

- **align** [str, optional] Either ‘origin’ or ‘target’. When set to ‘origin’, the t-th row of forecasts contains the forecasts for t+1, t+2, …, t+h. When set to ‘target’, the t-th row contains the
1-step ahead forecast from time \( t-1 \), the 2 step from time \( t-2 \), \ldots, and the \( h \)-step from time \( t-h \). ‘target’ simplified computing forecast errors since the realization and \( h \)-step forecast are aligned.

**method** [{‘analytic’, ‘simulation’, ‘bootstrap’}, optional] Method to use when producing the forecast. The default is analytic. The method only affects the variance forecast generation. Not all volatility models support all methods. In particular, volatility models that do not evolve in squares such as EGARCH or TARCH do not support the ‘analytic’ method for horizons > 1.

**simulations** [int, optional] Number of simulations to run when computing the forecast using either simulation or bootstrap.

**rng** [callable, optional] Custom random number generator to use in simulation-based forecasts. Must produce random samples using the syntax `rng(size)` where size the 2-element tuple (simulations, horizon).

**random_state** [RandomState, optional] NumPy RandomState instance to use when method is ‘bootstrap’

**Returns**

**forecasts** [ARCHModelForecast] \( t \) by \( h \) data frame containing the forecasts. The alignment of the forecasts is controlled by `align`.

**Notes**

The most basic 1-step ahead forecast will return a vector with the same length as the original data, where the \( t \)-th value will be the time-\( t \) forecast for time \( t + 1 \). When the horizon is > 1, and when using the default value for `align`, the forecast value in position \([t, h] \) is the time-\( t \), \( h+1 \) step ahead forecast.

If model contains exogenous variables (`model.x is not None`), then only 1-step ahead forecasts are available. Using horizon > 1 will produce a warning and all columns, except the first, will be nan-filled.

If `align` is ‘origin’, `forecast[t,h]` contains the forecast made using \( y[:t] \) (that is, up to but not including \( t \)) for horizon \( h + 1 \). For example, \( y[100,2] \) contains the 3-step ahead forecast using the first 100 data points, which will correspond to the realization \( y[100 + 2] \). If `align` is ‘target’, then the same forecast is in location \([102, 2] \), so that it is aligned with the observation to use when evaluating, but still in the same column.

**Return type** ARCHModelForecast

**arch.univariate.base.ARCHModelFixedResult.hedgehog_plot**

ARCHModelFixedResult.hedgehog_plot(self, params: Union[numpy.ndarray, pandas.core.series.Series, NoneType] = None, horizon: int = 10, step: int = 10, start: Union[int, str, datetime.datetime, numpy.datetime64, pandas._libs.tslibs.timestamps.Timestamp] = None, plot_type: str = 'volatility', method: str = 'analytic', simulations: int = 1000) → 'Figure'

Plot forecasts from estimated model

**Parameters**

**params** [[ndarray, Series]] Alternative parameters to use. If not provided, the parameters computed by fitting the model are used. Must be 1-d and identical in shape to the parameters computed by fitting the model.

**horizon** [int, optional] Number of steps to forecast
step [int, optional] Non-negative number of forecasts to skip between spines

start [int, datetime or str, optional] An integer, datetime or str indicating the first observation to produce the forecast for. Datetimes can only be used with pandas inputs that have a datetime index. Strings must be convertible to a date time, such as in ‘1945-01-01’. If not provided, the start is set to the earliest forecastable date.

plot_type [‘volatility’, ‘mean’] Quantity to plot, the forecast volatility or the forecast mean

method [‘analytic’, ‘simulation’, ‘bootstrap’] Method to use when producing the forecast. The default is analytic. The method only affects the variance forecast generation. Not all volatility models support all methods. In particular, volatility models that do not evolve in squares such as EGARCH or TARCH do not support the ‘analytic’ method for horizons > 1.

simulations [int] Number of simulations to run when computing the forecast using either simulation or bootstrap.

Returns

fig [figure] Handle to the figure

Examples

```python
>>> import pandas as pd
>>> from arch import arch_model
>>> am = arch_model(None, mean='HAR', lags=[1, 5, 22], vol='Constant')
>>> sim_data = am.simulate([0.1, 0.4, 0.3, 0.2, 1.0], 250)
>>> sim_data.index = pd.date_range('2000-01-01', periods=250)
>>> am = arch_model(sim_data['data'], mean='HAR', lags=[1, 5, 22], vol='Constant')
>>> res = am.fit()
>>> fig = res.hedgehog_plot(plot_type='mean')
```

Return type Figure

arch.univariate.base.ARCHModelFixedResult.plot

ARCHModelFixedResult.plot (self, annualize: Union[str, NoneType] = None, scale: Union[float, NoneType] = None) → 'Figure'

Plot standardized residuals and conditional volatility

Parameters

annualize [str, optional] String containing frequency of data that indicates plot should contain annualized volatility. Supported values are ‘D’ (daily), ‘W’ (weekly) and ‘M’ (monthly), which scale variance by 252, 52, and 12, respectively.

scale [float, optional] Value to use when scaling returns to annualize. If scale is provides, annualize is ignored and the value in scale is used.

Returns

fig [figure] Handle to the figure
Examples

```python
>>> from arch import arch_model
>>> am = arch_model(None)
>>> sim_data = am.simulate([0.0, 0.01, 0.07, 0.92], 252)
>>> am = arch_model(sim_data['data'])
>>> res = am.fit(update_freq=0, disp='off')
>>> fig = res.plot()
```

Produce a plot with annualized volatility

```python
>>> fig = res.plot(annualize='D')
```

Override the usual scale of 252 to use 360 for an asset that trades most days of the year

```python
>>> fig = res.plot(scale=360)
```

Return type: `Figure`

`arch.univariate.base.ARCHModelFixedResult.summary`

`ARCHModelFixedResult.summary(self) → statsmodels.iolib.summary.Summary`

Constructs a summary of the results from a fit model.

Returns

summary: `summary`  
[Summary instance] Object that contains tables and facilitated export to text, html or latex

Return type: `Summary`

Properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>aic</td>
<td>Akaike Information Criteria</td>
</tr>
<tr>
<td>bic</td>
<td>Schwarz/Bayesian Information Criteria</td>
</tr>
<tr>
<td>conditional_volatility</td>
<td>Estimated conditional volatility</td>
</tr>
<tr>
<td>loglikelihood</td>
<td>Model loglikelihood</td>
</tr>
<tr>
<td>model</td>
<td>Model instance used to produce the fit</td>
</tr>
<tr>
<td>nobs</td>
<td>Number of data points used to estimate model</td>
</tr>
<tr>
<td>num_params</td>
<td>Number of parameters in model</td>
</tr>
<tr>
<td>params</td>
<td>Model Parameters</td>
</tr>
<tr>
<td>resid</td>
<td>Model residuals</td>
</tr>
<tr>
<td>std_resid</td>
<td>Residuals standardized by conditional volatility</td>
</tr>
</tbody>
</table>

`arch.univariate.base.ARCHModelFixedResult.aic`

`ARCHModelFixedResult.aic`

Akaike Information Criteria

\[-2 \times \text{loglikelihood} + 2 \times \text{num}_\text{params}\]
ARCHModelFixedResult.bic

Schwarz/Bayesian Information Criteria

\[-2 \times \text{loglikelihood} + \log(\text{nobs}) \times \text{num\_params}\]

ARCHModelFixedResult.conditional_volatility

Estimated conditional volatility

Returns

conditional_volatility \([\text{ndarray, Series}]\) nobs element array containing the conditional volatility (square root of conditional variance). The values are aligned with the input data so that the value in the t-th position is the variance of t-th error, which is computed using time-(t-1) information.

ARCHModelFixedResult.loglikelihood

Model loglikelihood

ARCHModelFixedResult.model

Model instance used to produce the fit

ARCHModelFixedResult.nobs

Number of data points used to estimate model

ARCHModelFixedResult.num_params

Number of parameters in model

ARCHModelFixedResult.params

Model Parameters

ARCHModelFixedResult.resid

Model residuals
arch.univariate.base.ARCHModelFixedResult.std_resid

ARCHModelFixedResult.std_resid
Residuals standardized by conditional volatility

## 1.12 Utilities

Utilities that do not fit well on other pages.

### 1.12.1 Test Results

class arch.utility.testing.WaldTestStatistic (stat, df, null, alternative, name=None)
Test statistic holder for Wald-type tests

**Parameters**
- `stat` [float] The test statistic
- `df` [int] Degree of freedom.
- `null` [str] A statement of the test’s null hypothesis
- `alternative` [str] A statement of the test’s alternative hypothesis
- `name` [str, optional] Name of test

**Attributes**
- `alternative`
- `critical_values` Critical values test for common test sizes
- `null` Null hypothesis
- `pval` P-value of test statistic
- `stat` Test statistic

**Return type**
- `str` `pval`
- `float` `stat`

### 1.13 Theoretical Background

*To be completed*
CHAPTER 2

Bootstrapping

The bootstrap module provides both high- and low-level interfaces for bootstrapping data contained in NumPy arrays or pandas Series or DataFrames. All bootstraps have the same interfaces and only differ in their name, setup parameters and the (internally generated) sampling scheme.

2.1 Bootstrap Examples

This setup code is required to run in an IPython notebook

```
[1]: import warnings
 warnings.simplefilter('ignore')
 %matplotlib inline
 import matplotlib.pyplot as plt
 import seaborn

 seaborn.set_style('darkgrid')
 plt.rc("figure", figsize=(16, 6))
 plt.rc("savefig", dpi=90)
 plt.rc("font",family="sans-serif")
 plt.rc("font",size=14)
```

2.1.1 Sharpe Ratio

The Sharpe Ratio is an important measure of return per unit of risk. The example shows how to estimate the variance of the Sharpe Ratio and how to construct confidence intervals for the Sharpe Ratio using a long series of U.S. equity data.
The data set contains the Fama-French factors, including the excess market return.

```python
[3]: excess_market = ff.iloc[:, 0]
print(ff.describe())
```

<table>
<thead>
<tr>
<th></th>
<th>Mkt-RF</th>
<th>SMB</th>
<th>HML</th>
<th>RF</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>1109.000000</td>
<td>1109.000000</td>
<td>1109.000000</td>
<td>1109.000000</td>
</tr>
<tr>
<td>mean</td>
<td>0.659946</td>
<td>0.206555</td>
<td>0.368864</td>
<td>0.274220</td>
</tr>
<tr>
<td>std</td>
<td>5.327524</td>
<td>3.191132</td>
<td>3.482352</td>
<td>0.253377</td>
</tr>
<tr>
<td>min</td>
<td>-29.130000</td>
<td>-16.870000</td>
<td>-13.280000</td>
<td>-0.060000</td>
</tr>
<tr>
<td>25%</td>
<td>-1.970000</td>
<td>-1.560000</td>
<td>-1.320000</td>
<td>0.030000</td>
</tr>
<tr>
<td>50%</td>
<td>1.020000</td>
<td>0.070000</td>
<td>0.140000</td>
<td>0.230000</td>
</tr>
<tr>
<td>75%</td>
<td>3.610000</td>
<td>1.730000</td>
<td>1.740000</td>
<td>0.430000</td>
</tr>
<tr>
<td>max</td>
<td>38.850000</td>
<td>36.700000</td>
<td>35.460000</td>
<td>1.350000</td>
</tr>
</tbody>
</table>

The next step is to construct a function that computes the Sharpe Ratio. This function also return the annualized mean and annualized standard deviation which will allow the covariance matrix of these parameters to be estimated using the bootstrap.

```python
[4]: def sharpe_ratio(x):
 mu, sigma = 12 * x.mean(), np.sqrt(12 * x.var())
 values = np.array([mu, sigma, mu / sigma]).squeeze()
 index = ['mu', 'sigma', 'SR']
 return pd.Series(values, index=index)
```

The function can be called directly on the data to show full sample estimates.

```python
[5]: params = sharpe_ratio(excess_market)
```

```
mu 7.919351
sigma 18.455084
SR 0.429115
dtype: float64
```

**Warning**

The bootstrap chosen must be appropriate for the data. Squared returns are serially correlated, and so a time-series bootstrap is required.

Bootstraps are initialized with any bootstrap specific parameters and the data to be used in the bootstrap. Here the 12 is the average window length in the Stationary Bootstrap, and the next input is the data to be bootstrapped.

```python
[6]: from arch.bootstrap import StationaryBootstrap
```

```python
bs = StationaryBootstrap(12, excess_market)
results = bs.apply(sharpe_ratio, 2500)
SR = pd.DataFrame(results[:, -1:], columns=['SR'])
fig = SR.hist(bins=40)
```
```python
[7]:
cov = bs.cov(sharpe_ratio, 1000)
cov = pd.DataFrame(cov, index=params.index, columns=params.index)
print(cov)
se = pd.Series(np.sqrt(np.diag(cov)), index=params.index)
se.name = 'Std Errors'
print('
')
print(se)
```

```
mu sigma SR
mu 3.880950 -0.665755 0.224218
sigma -0.665755 3.391398 -0.114746
SR 0.224218 -0.114746 0.014910
```

```python
[8]:
ci = bs.conf_int(sharpe_ratio, 1000, method='basic', reuse=True)
ci = pd.DataFrame(ci, index=['Lower', 'Upper'], columns=params.index)
print(ci)
```

```
mu sigma SR
Lower 4.003466 14.978506 0.152022
Upper 11.955963 21.766202 0.649600
```

Alternative confidence intervals can be computed using a variety of methods. Setting `reuse=True` allows the previous bootstrap results to be used when constructing confidence intervals using alternative methods.

```python
[9]:
ci = bs.conf_int(sharpe_ratio, 1000, method='percentile', reuse=True)
ci = pd.DataFrame(ci, index=['Lower', 'Upper'], columns=params.index)
print(ci)
```

```
mu sigma SR
Lower 3.882739 15.143966 0.208629
Upper 11.835235 21.931661 0.706208
```
2.1.2 Probit (Statsmodels)

The second example makes use of a Probit model from Statsmodels. The demo data is university admissions data which contains a binary variable for being admitted, GRE score, GPA score and quartile rank. This data is downloaded from the internet and imported using pandas.

```
[10]: import arch.data.binary

 binary = arch.data.binary.load()
 binary = binary.dropna()
 print(binary.describe())
```

```
count admit gre gpa rank
 400.000000 400.000000 400.000000 400.000000
mean 0.31750000 587.700000 3.38990000 2.48500000
std 0.46608700 115.516536 0.38056700 0.94446000
min 0.00000000 220.000000 2.26000000 1.00000000
25% 0.00000000 520.000000 3.13000000 2.00000000
50% 0.00000000 580.000000 3.39500000 2.00000000
75% 1.00000000 660.000000 3.67000000 3.00000000
max 1.00000000 800.000000 4.00000000 4.00000000
```

Fitting the model directly

The first steps are to build the regressor and the dependent variable arrays. Then, using these arrays, the model can be estimated by calling `fit`.

```
[11]: import statsmodels.api as sm

 endog = binary[['admit']]
 exog = binary[['gre', 'gpa']]
 const = pd.Series(np.ones(exog.shape[0]), index=endog.index)
 const.name = 'Const'
 exog = pd.DataFrame([const, exog.gre, exog.gpa]).T

 # Estimate the model
 mod = sm.Probit(endog, exog)
 fit = mod.fit(disp=0)
 params = fit.params
 print(params)
```

```
Constr -3.003536
gre 0.001643
gpa 0.454575
dtype: float64
```

The wrapper function

Most models in Statsmodels are implemented as classes, require an explicit call to `fit` and return a class containing parameter estimates and other quantities. These classes cannot be directly used with the bootstrap methods. However, a simple wrapper can be written that takes the data as the only inputs and returns parameters estimated using a Statsmodel model.

```
[12]: def probit_wrap(endog, exog):

 return sm.Probit(endog, exog).fit(disp=0).params
```
A call to this function should return the same parameter values.

```python
[13]: probit_wrap(endog, exog)
```

```text
Const -3.003536
gre 0.001643
gpa 0.454575
dtype: float64
```

The wrapper can be directly used to estimate the parameter covariance or to construct confidence intervals.

```python
[14]: from arch.bootstrap import IIDBootstrap
bs = IIDBootstrap(endog=endog, exog=exog)
cov = bs.cov(probit_wrap, 1000)
cov = pd.DataFrame(cov, index=exog.columns, columns=exog.columns)
print(cov)
```

```
 Const gre gpa
Const 0.423317 -6.879547e-05 -0.109973
gre -0.000069 3.932805e-07 -0.000048
gpa -0.109973 -4.820164e-05 0.040393
```

```python
[15]: se = pd.Series(np.sqrt(np.diag(cov)), index=exog.columns)
print(se)
print('T-stats')
print(params / se)
```

```
 Const gre gpa
Const 0.650628
gre 0.000627
gpa 0.200980
dtype: float64
T-stats
Const -4.616365
gre 2.619171
gpa 2.261792
dtype: float64
```

```python
[16]: ci = bs.conf_int(probit_wrap, 1000, method='basic')
 ci = pd.DataFrame(ci, index=['Lower', 'Upper'], columns=exog.columns)
print(ci)
```

```
 Const gre gpa
Lower -4.188450 0.000355 0.009532
Upper -1.648672 0.002808 0.842136
```

**Speeding things up**

Starting values can be provided to `fit` which can save time finding starting values. Since the bootstrap parameter estimates should be close to the original sample estimates, the full sample estimated parameters are reasonable starting values. These can be passed using the `extra_kwargs` dictionary to a modified wrapper that will accept a keyword argument containing starting values.

```python
[17]: def probit_wrap_start_params(endog, exog, start_params=None):
 return sm.Probit(endog, exog).fit(start_params=start_params, disp=0).params
```

**2.1. Bootstrap Examples**
```python
[18]: bs.reset() # Reset to original state for comparability
cov = bs.cov(
 probit_wrap_start_params,
 1000,
 extra_kwargs={'start_params': params.values})
cov = pd.DataFrame(cov, index=exog.columns, columns=exog.columns)
print(cov)
```

<table>
<thead>
<tr>
<th></th>
<th>Const</th>
<th>gre</th>
<th>gpa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Const</td>
<td>0.423317</td>
<td>-6.879547e-05</td>
<td>-0.109973</td>
</tr>
<tr>
<td>gre</td>
<td>-0.000069</td>
<td>3.932805e-07</td>
<td>-0.000048</td>
</tr>
<tr>
<td>gpa</td>
<td>-0.109973</td>
<td>-4.820164e-05</td>
<td>0.040393</td>
</tr>
</tbody>
</table>

### 2.1.3 Bootstrapping Uneven Length Samples

Independent samples of uneven length are common in experiment settings, e.g., A/B testing of a website. The IIDBootstrap allows for arbitrary dependence within an observation index and so cannot be naturally applied to these data sets. The IndependentSamplesBootstrap allows datasets with variables of different lengths to be sampled by exploiting the independence of the values to separately bootstrap each component. Below is an example showing how a confidence interval can be constructed for the difference in means of two groups.

```python
[19]: from arch.bootstrap import IndependentSamplesBootstrap
def mean_diff(x, y):
 return x.mean() - y.mean()
rs = np.random.RandomState(0)
treatment = 0.2 + rs.standard_normal(200)
control = rs.standard_normal(800)
bs = IndependentSamplesBootstrap(treatment, control, random_state=rs)
print(bs.conf_int(mean_diff, method='studentized'))
[[0.1991302]
 [0.51317728]]
```

### 2.2 Confidence Intervals

The confidence interval function allows three types of confidence intervals to be constructed:

- Nonparametric, which only resamples the data
- Semi-parametric, which use resampled residuals
- Parametric, which simulate residuals

Confidence intervals can then be computed using one of 6 methods:

- Basic (basic)
- Percentile (percentile)
- Studentized (studentized)
- Asymptotic using parameter covariance (norm, var or cov)
• Bias-corrected (bc, bias-corrected or debiased)
• Bias-corrected and accelerated (bca)

2.2.1 Setup

All examples will construct confidence intervals for the Sharpe ratio of the S&P 500, which is the ratio of the annualized mean to the annualized standard deviation. The parameters will be the annualized mean, the annualized standard deviation and the Sharpe ratio.

The setup makes use of return data downloaded from Yahoo!

```python
import datetime as dt
import pandas as pd
import pandas_datareader.data as web

start = dt.datetime(1951, 1, 1)
end = dt.datetime(2014, 1, 1)
sp500 = web.DataReader('^GSPC', 'yahoo', start=start, end=end)
low = sp500.index.min()
high = sp500.index.max()
monthly_dates = pd.date_range(low, high, freq='M')
monthly = sp500.reindex(monthly_dates, method='ffill')
returns = 100 * monthly['Adj Close'].pct_change().dropna()
```

The main function used will return a 3-element array containing the parameters.

```python
def sharpe_ratio(x):
 mu, sigma = 12 * x.mean(), np.sqrt(12 * x.var())
 return np.array([mu, sigma, mu / sigma])
```

Note: Functions must return 1-d NumPy arrays or Pandas Series.
2.2.2 Confidence Interval Types

Three types of confidence intervals can be computed. The simplest are non-parametric; these only make use of parameter estimates from both the original data as well as the resampled data. Semi-parametric mix the original data with a limited form of resampling, usually for residuals. Finally, parametric bootstrap confidence intervals make use of a parametric distribution to construct “as-if” exact confidence intervals.

Nonparametric Confidence Intervals

Non-parametric sampling is the simplest method to construct confidence intervals. This example makes use of the percentile bootstrap which is conceptually the simplest method - it constructs many bootstrap replications and returns order statistics from these empirical distributions.

```python
from arch.bootstrap import IIDBootstrap
bs = IIDBootstrap(returns)
CI = bs.conf_int(sharpe_ratio, 1000, method='percentile')
```

Note: While returns have little serial correlation, squared returns are highly persistent. The IID bootstrap is not a good choice here. Instead a time-series bootstrap with an appropriately chosen block size should be used.

Semi-parametric Confidence Intervals

See Semiparametric Bootstraps

Parametric Confidence Intervals

See Parametric Bootstraps

2.2.3 Confidence Interval Methods

Note: `conf_int` can construct two-sided, upper or lower (one-sided) confidence intervals. All examples use two-sided, 95% confidence intervals (the default). This can be modified using the keyword inputs `type` ('upper', 'lower' or 'two-sided') and `size`.

Basic (basic)

Basic confidence intervals construct many bootstrap replications $\hat{\theta}^*_b$ and then constructs the confidence interval as

$$[\hat{\theta} + (\hat{\theta} - \hat{\theta}^*_u), \hat{\theta} + (\hat{\theta} - \hat{\theta}^*_l)]$$

where $\hat{\theta}^*_u$ and $\hat{\theta}^*_l$ are the $\alpha/2$ and $1 - \alpha/2$ empirical quantiles of the bootstrap distribution. When $\theta$ is a vector, the empirical quantiles are computed element-by-element.
from arch.bootstrap import IIDBootstrap
bs = IIDBootstrap(returns)
ci = bs.conf_int(sharpe_ratio, 1000, method='basic')

**Percentile (percentile)**

The percentile method directly constructs confidence intervals from the empirical CDF of the bootstrap parameter estimates, \( \hat{\theta}_b^* \). The confidence interval is then defined.

\[
[\hat{\theta}_l^*, \hat{\theta}_u^*]
\]

where \( \hat{\theta}_l^* \) and \( \hat{\theta}_u^* \) are the \( \alpha/2 \) and \( 1 - \alpha/2 \) empirical quantiles of the bootstrap distribution.

from arch.bootstrap import IIDBootstrap
bs = IIDBootstrap(returns)
ci = bs.conf_int(sharpe_ratio, 1000, method='percentile')

**Asymptotic Normal Approximation (norm, cov or var)**

The asymptotic normal approximation method estimates the covariance of the parameters and then combines this with the usual quantiles from a normal distribution. The confidence interval is then

\[
\left[\hat{\theta} + \hat{\sigma}\Phi^{-1}\left(\frac{\alpha}{2}\right), \hat{\theta} - \hat{\sigma}\Phi^{-1}\left(\frac{\alpha}{2}\right)\right]
\]

where \( \hat{\sigma} \) is the bootstrap estimate of the parameter standard error.

from arch.bootstrap import IIDBootstrap
bs = IIDBootstrap(returns)
ci = bs.conf_int(sharpe_ratio, 1000, method='norm')

**Studentized (studentized)**

The studentized bootstrap may be more accurate than some of the other methods. The studentized bootstrap makes use of either a standard error function, when parameter standard errors can be analytically computed, or a nested bootstrap, to bootstrap studentized versions of the original statistic. This can produce higher-order refinements in some circumstances.

The confidence interval is then

\[
\left[\hat{\theta} + \hat{\sigma}\hat{G}^{-1}\left(\frac{\alpha}{2}\right), \hat{\theta} + \hat{\sigma}\hat{G}^{-1}\left(1 - \frac{\alpha}{2}\right)\right]
\]

where \( \hat{G} \) is the estimated quantile function for the studentized data and where \( \hat{\sigma} \) is a bootstrap estimate of the parameter standard error.

The version that uses a nested bootstrap is simple to implement although it can be slow since it requires \( B \) inner bootstraps of each of the \( B \) outer bootstraps.

from arch.bootstrap import IIDBootstrap
bs = IIDBootstrap(returns)
ci = bs.conf_int(sharpe_ratio, 1000, method='studentized')

2.2. Confidence Intervals 195
In order to use the standard error function, it is necessary to estimate the standard error of the parameters. In this example, this can be done using a method-of-moments argument and the delta-method. A detailed description of the mathematical formula is beyond the intent of this document.

```python
def sharpe_ratio_se(params, x):
 mu, sigma, sr = params
 y = 12 * x
 e1 = y - mu
 e2 = y ** 2.0 - sigma ** 2.0
 errors = np.vstack((e1, e2)).T
 t = errors.shape[0]
 vcv = errors.T.dot(errors) / t
 D = np.array([[1, 0],
 [0, 0.5 * 1 / sigma],
 [1.0 / sigma, - mu / (2.0 * sigma ** 3)]])
 avar = D.dot(vcv / t).dot(D.T)
 return np.sqrt(np.diag(avar))
```

The studentized bootstrap can then be implemented using the standard error function.

```python
from arch.bootstrap import IIDBootstrap
bs = IIDBootstrap(returns)
ci = bs.conf_int(sharpe_ratio, 1000, method='studentized',
 std_err_func=sharpe_ratio_se)
```

Note: Standard error functions must return a 1-d array with the same number of element as params.

Note: Standard error functions must match the pattern `std_err_func(params, *args, **kwargs)` where `params` is an array of estimated parameters constructed using `*args` and `**kwargs`.

Bias-corrected (bc, bias-corrected or debiased)

The bias corrected bootstrap makes use of a bootstrap estimate of the bias to improve confidence intervals.

```python
from arch.bootstrap import IIDBootstrap
bs = IIDBootstrap(returns)
ci = bs.conf_int(sharpe_ratio, 1000, method='bc')
```

The bias-corrected confidence interval is identical to the bias-corrected and accelerated where $a = 0$.

Bias-corrected and accelerated (bca)

Bias-corrected and accelerated confidence intervals make use of both a bootstrap bias estimate and a jackknife acceleration term. BCa intervals may offer higher-order accuracy if some conditions are satisfied. Bias-corrected confidence intervals are a special case of BCa intervals where the acceleration parameter is set to 0.

```python
from arch.bootstrap import IIDBootstrap
bs = IIDBootstrap(returns)
ci = bs.conf_int(sharpe_ratio, 1000, method='bca')
```
The confidence interval is based on the empirical distribution of the bootstrap parameter estimates, \( \hat{\theta}^*_b \), where the percentiles used are

\[
\Phi \left( \Phi^{-1} \left( \hat{b} \right) + \frac{z_\alpha}{1 - \hat{a} \left( \Phi^{-1} \left( \hat{b} \right) + z_\alpha \right)} \right)
\]

where \( z_\alpha \) is the usual quantile from the normal distribution and \( \hat{b} \) is the empirical bias estimate,

\[
\hat{b} = \frac{\# \left\{ \hat{\theta}^*_b < \hat{\theta} \right\}}{B}
\]

\( a \) is a skewness-like estimator using a leave-one-out jackknife.

### 2.3 Covariance Estimation

The bootstrap can be used to estimate parameter covariances in applications where analytical computation is challenging, or simply as an alternative to traditional estimators.

This example estimates the covariance of the mean, standard deviation and Sharpe ratio of the S&P 500 using Yahoo! Finance data.

```python
import datetime as dt
import pandas as pd
import pandas_datareader.data as web

start = dt.datetime(1951, 1, 1)
end = dt.datetime(2014, 1, 1)
sp500 = web.DataReader('^GSPC', 'yahoo', start=start, end=end)
low = sp500.index.min()
high = sp500.index.max()
monthly_dates = pd.date_range(low, high, freq='M')
monthly = sp500.reindex(monthly_dates, method='ffill')
returns = 100 * monthly['Adj Close'].pct_change().dropna()
```

The function that returns the parameters.

```python
def sharpe_ratio(r):
 mu = 12 * r.mean(0)
 sigma = np.sqrt(12 * r.var(0))
 sr = mu / sigma
 return np.array([mu, sigma, sr])
```

Like all applications of the bootstrap, it is important to choose a bootstrap that captures the dependence in the data. This example uses the stationary bootstrap with an average block size of 12.

```python
import pandas as pd
from arch.bootstrap import StationaryBootstrap
bs = StationaryBootstrap(12, returns)
param_cov = bs.cov(sharpe_ratio)
index = ['mu', 'sigma', 'SR']
params = sharpe_ratio(returns)
params = pd.Series(params, index=index)
param_cov = pd.DataFrame(param_cov, index=index, columns=index)
```

The output is
>>> params
mu  8.148534
sigma 14.508540
SR  0.561637
dtype: float64

>>> param_cov
      mu   sigma   SR
mu  3.729435 -0.442891  0.273945
sigma -0.442891  0.495087 -0.049454
SR  0.273945 -0.049454  0.020830

Note: The covariance estimator is centered using the average of the bootstrapped estimators. The original sample estimator can be used to center using the keyword argument recenter=False.

2.4 Low-level Interfaces

2.4.1 Constructing Parameter Estimates

The bootstrap method apply can be use to directly compute parameter estimates from a function and the bootstrapped data.

This example makes use of monthly S&P 500 data.

```python
import datetime as dt
import pandas as pd
import pandas_datareader.data as web

start = dt.datetime(1951, 1, 1)
end = dt.datetime(2014, 1, 1)
sp500 = web.DataReader('^GSPC', 'yahoo', start=start, end=end)
low = sp500.index.min()
high = sp500.index.max()
monthly_dates = pd.date_range(low, high, freq='M')
monthly = sp500.reindex(monthly_dates, method='ffill')
returns = 100 * monthly['Adj Close'].pct_change().dropna()
```

The function will compute the Sharpe ratio – the (annualized) mean divided by the (annualized) standard deviation.

```python
import numpy as np
def sharpe_ratio(x):
 return np.array([12 * x.mean() / np.sqrt(12 * x.var())])
```

The bootstrapped Sharpe ratios can be directly computed using `apply`.

```python
import seaborn
from arch.bootstrap import IIDBootstrap
bs = IIDBootstrap(returns)
sharpe_ratios = bs.apply(sr, 1000)
sharpe_ratios = pd.DataFrame(sharp_ratios, columns=['Sharpe Ratio'])
sharpe_ratios.hist(bins=20)
```
2.4.2 The Bootstrap Iterator

The lowest-level method to use a bootstrap is the iterator. This is used internally in all higher-level methods that estimate a function using multiple bootstrap replications. The iterator returns a two-element tuple where the first element contains all positional arguments (in the order input) passed when constructing the bootstrap instance, and the second contains the all keyword arguments passed when constructing the instance.

This example makes uses of simulated data to demonstrate how to use the bootstrap iterator.

```python
import pandas as pd
import numpy as np

from arch.bootstrap import IIDBootstrap

x = np.random.randn(1000, 2)
y = pd.DataFrame(np.random.randn(1000, 3))
z = np.random.rand(1000, 10)
bs = IIDBootstrap(x, y=y, z=z)
```

(continues on next page)
for pos, kw in bs.bootstrap(1000):
    xstar = pos[0]  # pos is always a tuple, even when a singleton
    ystar = kw['y']  # A dictionary
    zstar = kw['z']  # A dictionary

2.5 Semiparametric Bootstraps

Functions for semi-parametric bootstraps differ from those used in nonparametric bootstraps. At a minimum they must accept the keyword argument params which will contain the parameters estimated on the original (non-bootstrap) data. This keyword argument must be optional so that the function can be called without the keyword argument to estimate parameters. In most applications other inputs will also be needed to perform the semi-parametric step - these can be input using the extra_kwargs keyword input.

For simplicity, consider a semiparametric bootstrap of an OLS regression. The bootstrap step will combine the original parameter estimates and original regressors with bootstrapped residuals to construct a bootstrapped regressand. The bootstrap regressand and regressors can then be used to produce a bootstrapped parameter estimate.

The user-provided function must:

- Estimate the parameters when params is not provided
- Estimate residuals from bootstrapped data when params is provided to construct bootstrapped residuals, simulate the regressand, and then estimate the bootstrapped parameters

```python
import numpy as np
def ols(y, x, params=None, x_orig=None):
 if params is None:
 return np.linalg.pinv(x).dot(y).ravel()

 # When params is not None
 # Bootstrap residuals
 resids = y - x.dot(params)
 # Simulated data
 y_star = x_orig.dot(params) + resids
 # Parameter estimates
 return np.linalg.pinv(x_orig).dot(y_star).ravel()
```

**Note:** The function should return a 1-dimensional array. ravel is used above to ensure that the parameters estimated are 1d.

This function can then be used to perform a semiparametric bootstrap

```python
from arch.bootstrap import IIDBootstrap
x = np.random.randn(100, 3)
e = np.random.randn(100, 1)
b = np.arange(1, 4)[::, None]
y = x.dot(b) + e
bs = IIDBootstrap(y, x)
CI = bs.conf_int(ols, 1000, method='percentile',
 sampling='semi', extra_kwargs={'x_orig': x})
```
2.5.1 Using partial instead of extra_kwargs

functools.partial can be used instead to provide a wrapper function which can then be used in the bootstrap. This example fixed the value of x_orig so that it is not necessary to use extra_kwargs.

```python
from functools import partial
ols_partial = partial(ols, x_orig=x)
ci = bs.conf_int(ols_partial, 1000, sampling='semi')
```

2.5.2 Semiparametric Bootstrap (Alternative Method)

Since semiparametric bootstraps are effectively bootstrapping residuals, an alternative method can be used to conduct a semiparametric bootstrap. This requires passing both the data and the estimated residuals when initializing the bootstrap.

First, the function used must be account for this structure.

```python
def ols_semi_v2(y, x, resids=None, params=None, x_orig=None):
 if params is None:
 return np.linalg.pinv(x).dot(y).ravel()

 # Simulated data if params provided
 y_star = x_orig.dot(params) + resids
 # Parameter estimates
 return np.linalg.pinv(x_orig).dot(y_star).ravel()
```

This version can then be used to directly implement a semiparametric bootstrap, although ultimately it is not meaningfully simpler than the previous method.

```python
resids = y - x.dot(ols_semi_v2(y,x))
bs = IIDBootstrap(y, x, resids=resids)
bs.conf_int(ols_semi_v2, 1000, sampling='semi', extra_kwargs={'x_orig': x})
```

**Note:** This alternative method is more useful when computing residuals is relatively expensive when compared to simulating data or estimating parameters. These circumstances are rarely encountered in actual problems.

2.6 Parametric Bootstraps

Parametric bootstraps are meaningfully different from their nonparametric or semiparametric cousins. Instead of sampling the data to simulate the data (or residuals, in the case of a semiparametric bootstrap), a parametric bootstrap makes use of a fully parametric model to simulate data using a pseudo-random number generator.

**Warning:** Parametric bootstraps are model-based methods to construct exact confidence intervals through integration. Since these confidence intervals should be exact, bootstrap methods which make use of asymptotic normality are required (and may not be desirable).

Implementing a parametric bootstrap, like implementing a semi-parametric bootstrap, requires specific keyword arguments. The first is params, which, when present, will contain the parameters estimated on the original data. The second is rng which will contain the numpy.random.RandomState instance that is used by the bootstrap. This is provided to facilitate simulation in a reproducible manner.
A parametric bootstrap function must:

- Estimate the parameters when `params` is not provided
- Simulate data when `params` is provided and then estimate the bootstrapped parameters on the simulated data

This example continues the OLS example from the semiparametric example, only assuming that residuals are normally distributed. The variance estimator is the MLE.

```python
def ols_para(y, x, params=None, state=None, x_orig=None):
 if params is None:
 beta = np.linalg.pinv(x).dot(y)
 e = y - x.dot(beta)
 sigma2 = e.T.dot(e) / e.shape[0]
 return np.r_[beta.ravel(), sigma2.ravel()]

 beta = params[:-1]
 sigma2 = params[-1]
 e = state.standard_normal(x_orig.shape[0])
 ystar = x_orig.dot(beta) + np.sqrt(sigma2) * e

 # Use the plain function to compute parameters
 return ols_para(ystar, x_orig)
```

This function can then be used to form parametric bootstrap confidence intervals.

```python
bs = IIDBootstrap(y, x)
ci = bs.conf_int(ols_para, 1000, method='percentile',
 sampling='parametric', extra_kwargs={'x_orig': x})
```

**Note:** The parameter vector in this example includes the variance since this is required when specifying a complete model.

### 2.7 Independent, Identical Distributed Data (i.i.d.)

`IIDBootstrap` is the standard bootstrap that is appropriate for data that is either i.i.d. or at least not serially dependant.

#### 2.7.1 arch.bootstrap.IIDBootstrap

```python
class arch.bootstrap.IIDBootstrap(*args, **kwargs)
 Bootstrap using uniform resampling
```

**Parameters**

- `args`  Positional arguments to bootstrap
- `kwargs`  Keyword arguments to bootstrap

**See also:**

```python
arch.bootstrap.IndependentSamplesBootstrap
```
Notes

Supports numpy arrays and pandas Series and DataFrames. Data returned has the same type as the input date.
Data entered using keyword arguments is directly accessibly as an attribute.

To ensure a reproducible bootstrap, you must set the random_state attribute after the bootstrap has been created. See the example below. Note that random_state is a reserved keyword and any variable passed using this keyword must be an instance of RandomState.

Examples

Data can be accessed in a number of ways. Positional data is retained in the same order as it was entered when the bootstrap was initialized. Keyword data is available both as an attribute or using a dictionary syntax on kw_data.

```python
>>> from arch.bootstrap import IIDBootstrap
>>> from numpy.random import standard_normal

>>> y = standard_normal((500, 1))
>>> x = standard_normal((500, 2))
>>> z = standard_normal(500)
>>> bs = IIDBootstrap(x, y=y, z=z)
>>> for data in bs.bootstrap(100):
... bs_x = data[0][0]
... bs_y = data[1]['y']
... bs_z = bs.z
```

Set the random_state if reproducibility is required

```python
>>> from numpy.random import RandomState

>>> rs = RandomState(1234)
>>> bs = IIDBootstrap(x, y=y, z=z, random_state=rs)
```

Attributes

- **data** [tuple] Two-element tuple with the pos_data in the first position and kw_data in the second (pos_data, kw_data)
- **pos_data** [tuple] Tuple containing the positional arguments (in the order entered)
- **kw_data** [dict] Dictionary containing the keyword arguments

Methods

- **apply**(self, func, Union[numpy.ndarray, ...]) Applies a function to bootstrap replicated data
- **bootstrap**(self, reps) Iterator for use when bootstrapping
- **clone**(self, *args, ...) Clones the bootstrap using different data.
- **conf_int**(self, func, Union[numpy.ndarray, ...])

Parameters

- **cov**(self, func, Union[numpy.ndarray, ...]) Compute parameter covariance using bootstrap
- **get_state**(self) Gets the state of the bootstrap’s random number generator
Table 2 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>reset(self, use_seed)</td>
<td>Resets the bootstrap to either its initial state or the last seed.</td>
</tr>
<tr>
<td>seed(self, value, List[int], numpy.ndarray])</td>
<td>Seeds the bootstrap’s random number generator</td>
</tr>
<tr>
<td>set_state(self, state, Any], Tuple[Any, ...]])</td>
<td>Sets the state of the bootstrap’s random number generator</td>
</tr>
<tr>
<td>update_indices(self)</td>
<td>Update indices for the next iteration of the bootstrap.</td>
</tr>
<tr>
<td>var(self, func, Union[numpy.ndarray, ...])</td>
<td>Compute parameter variance using bootstrap</td>
</tr>
</tbody>
</table>

arch.bootstrap.IIDBootstrap.apply

IIDBootstrap.apply(self, func: Callable[..., Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series]], reps: int = 1000, extra_kwargs: Union[Dict[str, Any], NoneType] = None) → numpy.ndarray

Applies a function to bootstrap replicated data

Parameters

- **func** [callable] Function the computes parameter values. See Notes for requirements
- **reps** [int, optional] Number of bootstrap replications
- **extra_kwargs** [dict, optional] Extra keyword arguments to use when calling func. Must not conflict with keyword arguments used to initialize bootstrap

Returns

- **ndarray** reps by nparam array of computed function values where each row corresponds to a bootstrap iteration

Notes

When there are no extra keyword arguments, the function is called

```
func(params, *args, **kwargs)
```

where args and kwars are the bootstrap version of the data provided when setting up the bootstrap. When extra keyword arguments are used, these are appended to kwars before calling func

Examples

```python
>>> import numpy as np
>>> x = np.random.randn(1000, 2)
>>> from arch.bootstrap import IIDBootstrap
>>> bs = IIDBootstrap(x)
>>> def func(y):
... return y.mean(0)
>>> results = bs.apply(func, 100)
```

Return type **ndarray**
arch.bootstrap.IIDBootstrap.bootstrap

IIDBootstrap.bootstrap(self, reps: int) → Generator[Tuple[Tuple[Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series], ...], Dict[str, Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series]]], NoneType, NoneType]

Iterator for use when bootstrapping

Parameters

reps [int] Number of bootstrap replications

Returns

generator Generator to iterate over in bootstrap calculations

Notes

The iterator returns a tuple containing the data entered in positional arguments as a tuple and the data entered using keywords as a dictionary

Examples

The key steps are problem dependent and so this example shows the use as an iterator that does not produce any output

```python
>>> from arch.bootstrap import IIDBootstrap
>>> import numpy as np

>>> bs = IIDBootstrap(np.arange(100), x=np.random.randn(100))

>>> for posdata, kwdata in bs.bootstrap(1000):
... # Do something with the positional data and/or keyword data
... pass
```

Note: Note this is a generic example and so the class used should be the name of the required bootstrap

Return type Generator[Tuple[Tuple[Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series], ...], Dict[str, Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series]]], NoneType, NoneType]

arch.bootstrap.IIDBootstrap.clone


Clones the bootstrap using different data.

Parameters

args Positional arguments to bootstrap

kwargs Keyword arguments to bootstrap

Returns

bs Bootstrap instance

Return type IIDBootstrap
arch.bootstrap.IIDBootstrap.conf_int

IIDBootstrap.conf_int(self, func: Callable[..., Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series]], reps: int = 1000, method: str = 'basic', size: float = 0.95, tail: str = 'two', extra_kwars: Union[Dict[str, Any], NoneType] = None, reuse: bool = False, sampling: str = 'nonparametric', std_err_func: Union[Callable[..., Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series]], NoneType] = None, studentize_reps: int = 1000) \to \text{numpy.ndarray}

Parameters

func [callable] Function the computes parameter values. See Notes for requirements
reps [int, optional] Number of bootstrap replications
method [string, optional] One of ‘basic’, ‘percentile’, ‘studentized’, ‘norm’ (identical to ‘var’, ‘cov’), ‘bc’ (identical to ‘debiased’, ‘bias-corrected’), or ‘bca’
size [float, optional] Coverage of confidence interval
tail [string, optional] One of ‘two’, ‘upper’ or ‘lower’.
reuse [bool, optional] Flag indicating whether to reuse previously computed bootstrap results. This allows alternative methods to be compared without rerunning the bootstrap simulation. Reuse is ignored if reps is not the same across multiple runs, func changes across calls, or method is ‘studentized’.
sampling [string, optional] Type of sampling to use: ‘nonparametric’, ‘semi-parametric’ (or ‘semi’) or ‘parametric’. The default is ‘nonparametric’. See notes about the changes to func required when using ‘semi’ or ‘parametric’.
extra_kwars [dict, optional] Extra keyword arguments to use when calling func and std_err_func, when appropriate
std_err_func [callable, optional] Function to use when standardizing estimated parameters when using the studentized bootstrap. Providing an analytical function eliminates the need for a nested bootstrap
studentize_reps [int, optional] Number of bootstraps to use in the inner bootstrap when using the studentized bootstrap. Ignored when std_err_func is provided

Returns

ndarray Computed confidence interval. Row 0 contains the lower bounds, and row 1 contains the upper bounds. Each column corresponds to a parameter. When tail is ‘lower’, all upper bounds are inf. Similarly, ‘upper’ sets all lower bounds to -inf.

Notes

When there are no extra keyword arguments, the function is called

```
func(*args, **kwargs)
```

where args and kwargs are the bootstrap version of the data provided when setting up the bootstrap. When extra keyword arguments are used, these are appended to kwargs before calling func.

The standard error function, if provided, must return a vector of parameter standard errors and is called
std_err_func(params, *args, **kwargs)

where `params` is the vector of estimated parameters using the same bootstrap data as in `args` and `kwargs`. The bootstraps are:

- ‘basic’ - Basic confidence using the estimated parameter and difference between the estimated parameter and the bootstrap parameters
- ‘percentile’ - Direct use of bootstrap percentiles
- ‘norm’ - Makes use of normal approximation and bootstrap covariance estimator
- ‘studentized’ - Uses either a standard error function or a nested bootstrap to estimate percentiles and the bootstrap covariance for scale
- ‘bc’ - Bias corrected using estimate bootstrap bias correction
- ‘bca’ - Bias corrected and accelerated, adding acceleration parameter to ‘bc’ method

Examples

```python
>>> import numpy as np
>>> def func(x):
... return x.mean(0)
>>> y = np.random.randn(1000, 2)
>>> from arch.bootstrap import IIDBootstrap
>>> bs = IIDBootstrap(y)
>>> ci = bs.conf_int(func, 1000)
```

Return type: ndarray

`arch.bootstrap.IIDBootstrap.cov`

`IIDBootstrap.cov(self, func: Callable[..., Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series]], reps: int = 1000, recenter: bool = True, extra_kwargs: Union[Dict[str, Any], NoneType] = None) → Union[float, numpy.ndarray]`

Compute parameter covariance using bootstrap

Parameters:

- `func` [callable] Callable function that returns the statistic of interest as a 1-d array
- `reps` [int, optional] Number of bootstrap replications
- `recenter` [bool, optional] Whether to center the bootstrap variance estimator on the average of the bootstrap samples (True) or to center on the original sample estimate (False). Default is True.
- `extra_kwargs` [dict, optional] Dictionary of extra keyword arguments to pass to `func`

Returns:

- `ndarray` Bootstrap covariance estimator

2.7. Independent, Identical Distributed Data (i.i.d.)
Notes

func must have the signature

```python
func(params, *args, **kwargs)
```

where params are a 1-dimensional array, and *args and **kwargs are data used in the bootstrap. The first argument, params, will be none when called using the original data, and will contain the estimate computed using the original data in bootstrap replications. This parameter is passed to allow parametric bootstrap simulation.

Examples

Bootstrap covariance of the mean

```python
>>> from arch.bootstrap import IIDBootstrap
>>> import numpy as np
>>> def func(x):
... return x.mean(axis=0)
>>> y = np.random.randn(1000, 3)
>>> bs = IIDBootstrap(y)
>>> cov = bs.cov(func, 1000)
```

Bootstrap covariance using a function that takes additional input

```python
>>> def func(x, stat='mean'):
... if stat == 'mean':
... return x.mean(axis=0)
... elif stat == 'var':
... return x.var(axis=0)
>>> cov = bs.cov(func, 1000, extra_kwargs={'stat': 'var'})
```

Note: Note this is a generic example and so the class used should be the name of the required bootstrap.

Return type Union[float, ndarray]

arch.bootstrap.IIDBootstrap.get_state

`IIDBootstrap.get_state(self) → Union[Dict[str, Any], Tuple[Any, ...]]`

Gets the state of the bootstrap’s random number generator

Returns

{dict, tuple} Dictionary or tuple containing the state.

Return type Union[Dict[str, Any], Tuple[Any, ...]]

arch.bootstrap.IIDBootstrap.reset

`IIDBootstrap.reset(self, use_seed: bool = True) → None`

Resets the bootstrap to either its initial state or the last seed.

Parameters
use_seed [bool, optional] Flag indicating whether to use the last seed if provided. If False or if no seed has been set, the bootstrap will be reset to the initial state. Default is True

Return type None

arch.bootstrap.IIDBootstrap.seed

IIDBootstrap.seed (self, value: Union[int, List[int], numpy.ndarray]) → None
Seeds the bootstrap’s random number generator

Parameters
value [[int, List[int], ndarray]] Value to use as the seed.

Return type None

arch.bootstrap.IIDBootstrap.set_state

IIDBootstrap.set_state (self, state: Union[Dict[str, Any], Tuple[Any, ...]]) → None
Sets the state of the bootstrap’s random number generator

Parameters
state [[dict, tuple]] Dictionary or tuple containing the state.

Return type None

arch.bootstrap.IIDBootstrap.update_indices

IIDBootstrap.update_indices (self) → numpy.ndarray
Update indices for the next iteration of the bootstrap. This must be overridden when creating new bootstraps.

Return type ndarray

arch.bootstrap.IIDBootstrap.var

IIDBootstrap.var (self, func: Callable[*, Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series]], reps: int = 1000, recenter: bool = True, extra_kwargs: Union[Dict[str, Any], NoneType] = None) → Union[float, numpy.ndarray]
Compute parameter variance using bootstrap

Parameters
func [callable] Callable function that returns the statistic of interest as a 1-d array
reps [int, optional] Number of bootstrap replications
recenter [bool, optional] Whether to center the bootstrap variance estimator on the average of the bootstrap samples (True) or to center on the original sample estimate (False). Default is True.
extra_kwargs: dict, optional Dictionary of extra keyword arguments to pass to func

Returns
**ndarray**  Bootstrap variance estimator

**Notes**

func must have the signature

```python
func(params, *args, **kwargs)
```

where params are a 1-dimensional array, and *args and **kwargs are data used in the bootstrap. The first argument, params, will be none when called using the original data, and will contain the estimate computed using the original data in bootstrap replications. This parameter is passed to allow parametric bootstrap simulation.

**Examples**

Bootstrap covariance of the mean

```python
>>> from arch.bootstrap import IIDBootstrap
>>> import numpy as np
>>> def func(x):
... return x.mean(axis=0)
>>> y = np.random.randn(1000, 3)
>>> bs = IIDBootstrap(y)
>>> variances = bs.var(func, 1000)
```

Bootstrap covariance using a function that takes additional input

```python
>>> def func(x, stat='mean'):
... if stat=='mean':
... return x.mean(axis=0)
... elif stat=='var':
... return x.var(axis=0)
>>> variances = bs.var(func, 1000, extra_kwargs={'stat': 'var'})
```

**Note:** Note this is a generic example and so the class used should be the name of the required bootstrap

**Return type** `Union[float, ndarray]`

**Properties**

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>index</code></td>
<td>The current index of the bootstrap</td>
</tr>
<tr>
<td><code>random_state</code></td>
<td>Set or get the instance random state</td>
</tr>
</tbody>
</table>

**arch.bootstrap.IIDBootstrap.index**

`IIDBootstrap.index`

The current index of the bootstrap

**Return type** `ndarray`
arch.bootstrap.IIDBootstrap.random_state

IIDBootstrap.random_state
Set or get the instance random state

Parameters

random_state [RandomState] RandomState instance used by bootstrap

Returns

RandomState RandomState instance used by bootstrap

Return type RandomState

2.8 Independent Samples

IndependentSamplesBootstrap is a bootstrap that is appropriate for data is totally independent, and where each variable may have a different sample size. This type of data arises naturally in experimental settings, e.g., website A/B testing.

IndependentSamplesBootstrap(*args,**kwargs) Bootstrap the independently resamples each input

2.8.1 arch.bootstrap.IndependentSamplesBootstrap

class arch.bootstrap.IndependentSamplesBootstrap(*args,**kwargs) Bootstrap the independently resamples each input

Parameters

args Positional arguments to bootstrap

kwags Keyword arguments to bootstrap

See also:

arch.bootstrap.IIDBootstrap

Notes

This bootstrap independently resamples each input and so is only appropriate when the inputs are independent. This structure allows bootstrapping statistics that depend on samples with unequal length, as is common in some experiments. If data have cross-sectional dependence, so that observation \( i \) is related across all inputs, this bootstrap is inappropriate.

Supports numpy arrays and pandas Series and DataFrames. Data returned has the same type as the input date. Data entered using keyword arguments is directly accessible as an attribute.

To ensure a reproducible bootstrap, you must set the random_state attribute after the bootstrap has been created. See the example below. Note that random_state is a reserved keyword and any variable passed using this keyword must be an instance of RandomState.
Examples

Data can be accessed in a number of ways. Positional data is retained in the same order as it was entered when the bootstrap was initialized. Keyword data is available both as an attribute or using a dictionary syntax on kw_data.

```python
>>> from arch.bootstrap import IndependentSamplesBootstrap
>>> from numpy.random import standard_normal

>>> y = standard_normal(500)
>>> x = standard_normal(200)
>>> z = standard_normal(2000)
>>> bs = IndependentSamplesBootstrap(x, y=y, z=z)
>>> for data in bs.bootstrap(100):
... bs_x = data[0][0]
... bs_y = data[1]['y']
... bs_z = bs.z
```

Set the random_state if reproducibility is required

```python
>>> from numpy.random import RandomState

>>> rs = RandomState(1234)
>>> bs = IndependentSamplesBootstrap(x, y=y, z=z, random_state=rs)
```

Attributes

- **data** [tuple] Two-element tuple with the pos_data in the first position and kw_data in the second (pos_data, kw_data)
- **pos_data** [tuple] Tuple containing the positional arguments (in the order entered)
- **kw_data** [dict] Dictionary containing the keyword arguments

Methods

- **apply** (self, func, Union[numpy.ndarray, ...]) Applies a function to bootstrap replicated data
- **bootstrap** (self, reps) Iterator for use when bootstrapping
- **clone** (self, *args, ...) Clones the bootstrap using different data.
- **conf_int** (self, func, Union[numpy.ndarray, ...])

Parameters

- **cov** (self, func, Union[numpy.ndarray, ...]) Compute parameter covariance using bootstrap
- **get_state** (self) Gets the state of the bootstrap’s random number generator
- **reset** (self, use_seed) Resets the bootstrap to either its initial state or the last seed.
- **seed** (self, value, List[int], numpy.ndarray) Seeds the bootstrap’s random number generator
- **set_state** (self, state, Any, Tuple[Any, ...]) Sets the state of the bootstrap’s random number generator
- **update_indices** (self) Update indices for the next iteration of the bootstrap.
- **var** (self, func, Union[numpy.ndarray, ...]) Compute parameter variance using bootstrap
arch.bootstrap.IndependentSamplesBootstrap.apply

IndependentSamplesBootstrap.apply(self, func: Callable[..., Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series]], reps: int = 1000, extra_kwargs: Union[Dict[str, Any], NoneType] = None) → numpy.ndarray

Applies a function to bootstrap replicated data

Parameters

func [callable] Function the computes parameter values. See Notes for requirements
reps [int, optional] Number of bootstrap replications
extra_kwargs [dict, optional] Extra keyword arguments to use when calling func. Must not conflict with keyword arguments used to initialize bootstrap

Returns

ndarray reps by nparam array of computed function values where each row corresponds to a bootstrap iteration

Notes

When there are no extra keyword arguments, the function is called

```
func(params, *args, **kwargs)
```

where args and kwargs are the bootstrap version of the data provided when setting up the bootstrap. When extra keyword arguments are used, these are appended to kwargs before calling func

Examples

```python
>>> import numpy as np
>>> x = np.random.randn(1000, 2)
>>> from arch.bootstrap import IIDBootstrap
>>> bs = IIDBootstrap(x)
>>> def func(y):
... return y.mean(0)
>>> results = bs.apply(func, 100)
```

Return type ndarray

arch.bootstrap.IndependentSamplesBootstrap.bootstrap

IndependentSamplesBootstrap.bootstrap(self, reps: int) → Generator[Tuple[Tuple[Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series]], Dict[str, Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series]], NoneType, NoneType]]

Iterator for use when bootstrapping

Parameters
reps [int] Number of bootstrap replications

Returns

generator Generator to iterate over in bootstrap calculations

Notes

The iterator returns a tuple containing the data entered in positional arguments as a tuple and the data entered using keywords as a dictionary

Examples

The key steps are problem dependent and so this example shows the use as an iterator that does not produce any output

```python
>>> from arch.bootstrap import IIDBootstrap
>>> import numpy as np

bs = IIDBootstrap(np.arange(100), x=np.random.randn(100))

for posdata, kwdata in bs.bootstrap(1000):
 ...
 # Do something with the positional data and/or keyword data
 ... pass
```

Note: Note this is a generic example and so the class used should be the name of the required bootstrap

Return type Generator[Tuple[Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series], ...], Dict[str, Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series]], None, None]

arch.bootstrap.IndependentSamplesBootstrap.clone


Clones the bootstrap using different data.

Parameters

args Positional arguments to bootstrap

kwargs Keyword arguments to bootstrap

Returns

bs Bootstrap instance

Return type IIDBootstrap
arch.bootstrap.IndependentSamplesBootstrap.conf_int

IndependentSamplesBootstrap.conf_int (self, func: Callable[..., Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series]], reps: int = 1000, method: str = 'basic', size: float = 0.95, tail: str = 'two', extra_kwargs: Union[Dict[str, Any], NoneType] = None, reuse: bool = False, sampling: str = 'nonparametric', std_err_func: Union[Callable[..., Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series]], NoneType] = None, studentize_reps: int = 1000) \→ numpy.ndarray

Parameters

func  [callable] Function the computes parameter values. See Notes for requirements

reps  [int, optional] Number of bootstrap replications

method  [string, optional] One of ‘basic’, ‘percentile’, ‘studentized’, ‘norm’ (identical to ‘var’, ‘cov’), ‘bc’ (identical to ‘debiased’, ‘bias-corrected’), or ‘bca’

size  [float, optional] Coverage of confidence interval

tail  [string, optional] One of ‘two’, ‘upper’ or ‘lower’.

reuse  [bool, optional] Flag indicating whether to reuse previously computed bootstrap results. This allows alternative methods to be compared without rerunning the bootstrap simulation. Reuse is ignored if reps is not the same across multiple runs, func changes across calls, or method is ‘studentized’.

sampling  [string, optional] Type of sampling to use: ‘nonparametric’, ‘semi-parametric’ (or ‘semi’) or ‘parametric’. The default is ‘nonparametric’. See notes about the changes to func required when using ‘semi’ or ‘parametric’.

extra_kwargs  [dict, optional] Extra keyword arguments to use when calling func and std_err_func, when appropriate

std_err_func  [callable, optional] Function to use when standardizing estimated parameters when using the studentized bootstrap. Providing an analytical function eliminates the need for a nested bootstrap

studentize_reps  [int, optional] Number of bootstraps to use in the inner bootstrap when using the studentized bootstrap. Ignored when std_err_func is provided

Returns

ndarray  Computed confidence interval. Row 0 contains the lower bounds, and row 1 contains the upper bounds. Each column corresponds to a parameter. When tail is ‘lower’, all upper bounds are inf. Similarly, ‘upper’ sets all lower bounds to -inf.

Notes

When there are no extra keyword arguments, the function is called

```
func(*args, **kwargs)
```

where args and kwargs are the bootstrap version of the data provided when setting up the bootstrap. When extra keyword arguments are used, these are appended to kwargs before calling func.
The standard error function, if provided, must return a vector of parameter standard errors and is called

```python
std_err_func(params, *args, **kwargs)
```

where `params` is the vector of estimated parameters using the same bootstrap data as in `args` and `kwargs`. The bootstraps are:

- ‘basic’ - Basic confidence using the estimated parameter and difference between the estimated parameter and the bootstrap parameters
- ‘percentile’ - Direct use of bootstrap percentiles
- ‘norm’ - Makes use of normal approximation and bootstrap covariance estimator
- ‘studentized’ - Uses either a standard error function or a nested bootstrap to estimate percentiles and the bootstrap covariance for scale
- ‘bc’ - Bias corrected using estimate bootstrap bias correction
- ‘bca’ - Bias corrected and accelerated, adding acceleration parameter to ‘bc’ method

### Examples

```python
>>> import numpy as np
>>> def func(x):
... return x.mean(0)
>>> y = np.random.randn(1000, 2)
>>> from arch.bootstrap import IIDBootstrap

>>> bs = IIDBootstrap(y)
>>> ci = bs.conf_int(func, 1000)
```

**Return type** `ndarray`

**arch.bootstrap.IndependentSamplesBootstrap.cov**

```python
IndependentSamplesBootstrap.cov(self, func: Callable[..., Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series]], reps: int = 1000, recenter: bool = True, extra_kwargs: Union[Dict[str, Any], NoneType] = None) -> Union[float, numpy.ndarray]
```

Compute parameter covariance using bootstrap

**Parameters**

- `func` [callable] Callable function that returns the statistic of interest as a 1-d array
- `reps` [int, optional] Number of bootstrap replications
- `recenter` [bool, optional] Whether to center the bootstrap variance estimator on the average of the bootstrap samples (True) or to center on the original sample estimate (False). Default is True.
- `extra_kwargs` [dict, optional] Dictionary of extra keyword arguments to pass to `func`

**Returns**

- `ndarray` Bootstrap covariance estimator
Notes

func must have the signature

```python
func(params, *args, **kwargs)
```

where params are a 1-dimensional array, and *args and **kwargs are data used in the the bootstrap. The first argument, params, will be none when called using the original data, and will contain the estimate computed using the original data in bootstrap replications. This parameter is passed to allow parametric bootstrap simulation.

Examples

Bootstrap covariance of the mean

```python
>>> from arch.bootstrap import IIDBootstrap
>>> import numpy as np
>>> def func(x):
... return x.mean(axis=0)
>>> y = np.random.randn(1000, 3)
>>> bs = IIDBootstrap(y)
>>> cov = bs.cov(func, 1000)
```

Bootstrap covariance using a function that takes additional input

```python
>>> def func(x, stat='mean'):
... if stat=='mean':
... return x.mean(axis=0)
... elif stat=='var':
... return x.var(axis=0)
>>> cov = bs.cov(func, 1000, extra_kwargs={'stat':'var'})
```

Note: Note this is a generic example and so the class used should be the name of the required bootstrap

Return type Union[float, ndarray]
**use_seed** [bool, optional] Flag indicating whether to use the last seed if provided. If False or if no seed has been set, the bootstrap will be reset to the initial state. Default is True

**Return type** None

**arch.bootstrap.IndependentSamplesBootstrap.seed**

IndependentSamplesBootstrap.seed(self, value: Union[int, List[int], numpy.ndarray]) → None

Seeds the bootstrap’s random number generator

**Parameters**

- **value** (int, List[int], ndarray) Value to use as the seed.

**Return type** None

**arch.bootstrap.IndependentSamplesBootstrap.set_state**

IndependentSamplesBootstrap.set_state(self, state: Union[Dict[str, Any], Tuple[Any, ...]]) → None

Sets the state of the bootstrap’s random number generator

**Parameters**

- **state** (dict, tuple) Dictionary or tuple containing the state.

**Return type** None

**arch.bootstrap.IndependentSamplesBootstrap.update_indices**

IndependentSamplesBootstrap.update_indices(self) → Tuple[List[numpy.ndarray], Dict[str, numpy.ndarray]]

Update indices for the next iteration of the bootstrap. This must be overridden when creating new bootstraps.

**Return type** Tuple[List[ndarray], Dict[str, ndarray]]

**arch.bootstrap.IndependentSamplesBootstrap.var**

IndependentSamplesBootstrap.var(self, func: Callable[..., Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series]], reps: int = 1000, recenter: bool = True, extra_kwargs: Union[Dict[str, Any], NoneType] = None) → Union[float, numpy.ndarray]

Compute parameter variance using bootstrap

**Parameters**

- **func** (callable) Callable function that returns the statistic of interest as a 1-d array
- **reps** (int, optional) Number of bootstrap replications
- **recenter** (bool, optional) Whether to center the bootstrap variance estimator on the average of the bootstrap samples (True) or to center on the original sample estimate (False). Default is True.
extra_kwargs: dict, optional  Dictionary of extra keyword arguments to pass to func

Returns

ndarray  Bootstrap variance estimator

Notes

func must have the signature

```
func(params, *args, **kwargs)
```

where params are a 1-dimensional array, and *args and **kwargs are data used in the the bootstrap. The first argument, params, will be none when called using the original data, and will contain the estimate computed using the original data in bootstrap replications. This parameter is passed to allow parametric bootstrap simulation.

Examples

Bootstrap covariance of the mean

```
>>> from arch.bootstrap import IIDBootstrap
>>> import numpy as np
>>> def func(x):
... return x.mean(axis=0)
>>> y = np.random.randn(1000, 3)
>>> bs = IIDBootstrap(y)
>>> variances = bs.var(func, 1000)
```

Bootstrap covariance using a function that takes additional input

```
>>> def func(x, stat='mean'):
... if stat=='mean':
... return x.mean(axis=0)
... elif stat=='var':
... return x.var(axis=0)
>>> variances = bs.var(func, 1000, extra_kwargs={'stat': 'var'})
```

Note:  Note this is a generic example and so the class used should be the name of the required bootstrap

Return type Union[float, ndarray]

Properties

<table>
<thead>
<tr>
<th>index</th>
<th>Returns the current index of the bootstrap</th>
</tr>
</thead>
<tbody>
<tr>
<td>random_state</td>
<td>Set or get the instance random state</td>
</tr>
</tbody>
</table>

arch.bootstrap.IndependentSamplesBootstrap.index

IndependentSamplesBootstrap.index  Returns the current index of the bootstrap
Returns

```
tuple[list[ndarray], dict[str, ndarray]]
```
2-element tuple containing a list and a dictionary. The list contains indices for each of the positional arguments. The dictionary contains the indices of keyword arguments.

**Return type** `Tuple[list[ndarray], dict[str, ndarray]]`

### arch.bootstrap.IndependentSamplesBootstrap.random_state

```
IndependentSamplesBootstrap.random_state
```

Set or get the instance random state

**Parameters**

- `random_state` [RandomState] RandomState instance used by bootstrap

**Returns**

- `RandomState` RandomState instance used by bootstrap

**Return type** `RandomState`

## 2.9 Time-series Bootstraps

Bootstraps for time-series data come in a variety of forms. The three contained in this package are the stationary bootstrap (`StationaryBootstrap`), which uses blocks with an exponentially distributed lengths, the circular block bootstrap (`CircularBlockBootstrap`), which uses fixed length blocks, and the moving block bootstrap which also uses fixed length blocks (`MovingBlockBootstrap`). The moving block bootstrap does not wrap around and so observations near the start or end of the series will be systematically under-sampled. It is not recommended for this reason.

<table>
<thead>
<tr>
<th>Bootstrap</th>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>StationaryBootstrap</td>
<td><code>block_size</code>, *args, **kwargs`</td>
<td>Politis and Romano (1994) bootstrap with exp. distributed block sizes</td>
</tr>
<tr>
<td>CircularBlockBootstrap</td>
<td><code>block_size</code>, *args, **kwargs`</td>
<td>Bootstrap based on blocks of the same length with end-to-start wrap around</td>
</tr>
<tr>
<td>MovingBlockBootstrap</td>
<td><code>block_size</code>, *args, **kwargs`</td>
<td>Bootstrap based on blocks of the same length without wrap around</td>
</tr>
</tbody>
</table>

### 2.9.1 arch.bootstrap.StationaryBootstrap

```
class arch.bootstrap.StationaryBootstrap
```

Politis and Romano (1994) bootstrap with exp. distributed block sizes

**Parameters**

- `block_size` [int] Average size of block to use
- `args` Positional arguments to bootstrap
- `kwargs` Keyword arguments to bootstrap
Notes

Supports numpy arrays and pandas Series and DataFrames. Data returned has the same type as the input date. Data entered using keyword arguments is directly accessibly as an attribute.

To ensure a reproducible bootstrap, you must set the `random_state` attribute after the bootstrap has been created. See the example below. Note that `random_state` is a reserved keyword and any variable passed using this keyword must be an instance of `RandomState`.

Examples

Data can be accessed in a number of ways. Positional data is retained in the same order as it was entered when the bootstrap was initialized. Keyword data is available both as an attribute or using a dictionary syntax on `kw_data`.

```python
>>> from arch.bootstrap import StationaryBootstrap
>>> from numpy.random import standard_normal

>>> y = standard_normal((500, 1))
>>> x = standard_normal((500, 2))
>>> z = standard_normal(500)
>>> bs = StationaryBootstrap(12, x, y=y, z=z)
>>> for data in bs.bootstrap(100):
... bs_x = data[0][0]
... bs_y = data[1]['y']
... bs_z = bs.z
```

Set the `random_state` if reproducibility is required

```python
>>> from numpy.random import RandomState

>>> rs = RandomState(1234)
>>> bs = StationaryBootstrap(12, x, y=y, z=z, random_state=rs)
```

Attributes

- `data` [tuple] Two-element tuple with the `pos_data` in the first position and `kw_data` in the second (`pos_data`, `kw_data`)
- `pos_data` [tuple] Tuple containing the positional arguments (in the order entered)
- `kw_data` [dict] Dictionary containing the keyword arguments

Methods

- `apply(self, func, Union[numpy.ndarray, ...])` Applies a function to bootstrap replicated data
- `bootstrap(self, reps)` Iterator for use when bootstrapping
- `clone(self, *args, ...)` Clones the bootstrap using different data.
- `conf_int(self, func, Union[numpy.ndarray, ...])` Compute parameter covariance using bootstrap

Parameters

- `cov(self, func, Union[numpy.ndarray, ...])` Compute parameter covariance using bootstrap
- `get_state(self)` Gets the state of the bootstrap’s random number generator

Continued on next page
Table 8 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>reset</code></td>
<td>Resets the bootstrap to either its initial state or the last seed.</td>
</tr>
<tr>
<td><code>seed</code></td>
<td>Seeds the bootstrap’s random number generator</td>
</tr>
<tr>
<td><code>set_state</code></td>
<td>Sets the state of the bootstrap’s random number generator</td>
</tr>
<tr>
<td><code>update_indices</code></td>
<td>Update indices for the next iteration of the bootstrap.</td>
</tr>
<tr>
<td><code>var</code></td>
<td>Compute parameter variance using bootstrap</td>
</tr>
</tbody>
</table>

**arch.bootstrap.StationaryBootstrap.apply**

```python
StationaryBootstrap.apply(self, func: Callable[..., Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series]], reps: int = 1000, extra_kwargs: Union[Dict[str, Any], NoneType] = None) -> numpy.ndarray
```

Applies a function to bootstrap replicated data

**Parameters**
- **func** [callable] Function the computes parameter values. See Notes for requirements
- **reps** [int, optional] Number of bootstrap replications
- **extra_kwargs** [dict, optional] Extra keyword arguments to use when calling func. Must not conflict with keyword arguments used to initialize bootstrap

**Returns**
- **ndarray** reps by nparam array of computed function values where each row corresponds to a bootstrap iteration

**Notes**

When there are no extra keyword arguments, the function is called

```python
func(params, *args, **kwargs)
```

where args and kwargs are the bootstrap version of the data provided when setting up the bootstrap. When extra keyword arguments are used, these are appended to kwargs before calling func

**Examples**

```python
>>> import numpy as np
>>> x = np.random.randn(1000, 2)
>>> from arch.bootstrap import IIDBootstrap
>>> bs = IIDBootstrap(x)
>>> def func(y):
... return y.mean(0)
>>> results = bs.apply(func, 100)

Return type ndarray
```
arch.bootstrap.StationaryBootstrap.bootstrap

StationaryBootstrap.bootstrap(self, reps: int) → Generator[Tuple[Tuple[Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series], ...], Dict[str, Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series]]], NoneType, NoneType]

Iterator for use when bootstrapping

Parameters

reps [int] Number of bootstrap replications

Returns

generator Generator to iterate over in bootstrap calculations

Notes

The iterator returns a tuple containing the data entered in positional arguments as a tuple and the data entered using keywords as a dictionary

Examples

The key steps are problem dependent and so this example shows the use as an iterator that does not produce any output

```python
>>> from arch.bootstrap import IIDBootstrap
>>> import numpy as np

>>> bs = IIDBootstrap(np.arange(100), x=np.random.randn(100))

>>> for posdata, kwdata in bs.bootstrap(1000):
... # Do something with the positional data and/or keyword data
... pass
```

Note: Note this is a generic example and so the class used should be the name of the required bootstrap

Return type Generator[Tuple[Tuple[Union[numpy.ndarray, DataFrame, Series], ...], Dict[str, Union[numpy.ndarray, DataFrame, Series]]], NoneType, NoneType]

arch.bootstrap.StationaryBootstrap.clone


Clones the bootstrap using different data.

Parameters

args Positional arguments to bootstrap

kwargs Keyword arguments to bootstrap

Returns

2.9. Time-series Bootstraps 223
bs  Bootstrap instance

Return type  IIDBootstrap

arch.bootstrap.StationaryBootstrap.conf_int


Parameters

func  [callable] Function the computes parameter values. See Notes for requirements
reps  [int, optional] Number of bootstrap replications
method  [string, optional] One of ‘basic’, ‘percentile’, ‘studentized’, ‘norm’ (identical to ‘var’, ‘cov’), ‘bc’ (identical to ‘debiased’, ‘bias-corrected’), or ‘bca’
size  [float, optional] Coverage of confidence interval
tail  [string, optional] One of ‘two’, ‘upper’ or ‘lower’.
reuse  [bool, optional] Flag indicating whether to reuse previously computed bootstrap results. This allows alternative methods to be compared without rerunning the bootstrap simulation. Reuse is ignored if reps is not the same across multiple runs, func changes across calls, or method is ‘studentized’.
sampling  [string, optional] Type of sampling to use: ‘nonparametric’, ‘semi-parametric’ (or ‘semi’) or ‘parametric’. The default is ‘nonparametric’. See notes about the changes to func required when using ‘semi’ or ‘parametric’.
extra_kwargs  [dict, optional] Extra keyword arguments to use when calling func and std_err_func, when appropriate
std_err_func  [callable, optional] Function to use when standardizing estimated parameters when using the studentized bootstrap. Providing an analytical function eliminates the need for a nested bootstrap
studentize_reps  [int, optional] Number of bootstraps to use in the inner bootstrap when using the studentized bootstrap. Ignored when std_err_func is provided

Returns

ndarray  Computed confidence interval. Row 0 contains the lower bounds, and row 1 contains the upper bounds. Each column corresponds to a parameter. When tail is ‘lower’, all upper bounds are inf. Similarly, ‘upper’ sets all lower bounds to -inf.

Notes

When there are no extra keyword arguments, the function is called
func(*args, **kwargs)

where args and kwargs are the bootstrap version of the data provided when setting up the bootstrap. When extra keyword arguments are used, these are appended to kwargs before calling func.

The standard error function, if provided, must return a vector of parameter standard errors and is called

std_err_func(params, *args, **kwargs)

where params is the vector of estimated parameters using the same bootstrap data as in args and kwargs.

The bootstraps are:
- ‘basic’ - Basic confidence using the estimated parameter and difference between the estimated parameter and the bootstrap parameters
- ‘percentile’ - Direct use of bootstrap percentiles
- ‘norm’ - Makes use of normal approximation and bootstrap covariance estimator
- ‘studentized’ - Uses either a standard error function or a nested bootstrap to estimate percentiles and the bootstrap covariance for scale
- ‘bc’ - Bias corrected using estimate bootstrap bias correction
- ‘bca’ - Bias corrected and accelerated, adding acceleration parameter to ‘bc’ method

Examples

```python
>>> import numpy as np
def func(x):
... return x.mean(0)
>>> y = np.random.randn(1000, 2)
>>> from arch.bootstrap import IIDBootstrap

bs = IIDBootstrap(y)
>>> ci = bs.conf_int(func, 1000)
```

Return type ndarray

arch.bootstrap.StationaryBootstrap.cov

StationaryBootstrap.cov(self, func: Callable[..., Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series]], reps: int = 1000, recenter: bool = True, extra_kwargs: Union[Dict[str, Any], NoneType] = None) \[Union[float, numpy.ndarray] \]

Compute parameter covariance using bootstrap

Parameters

- func [callable] Callable function that returns the statistic of interest as a 1-d array
- reps [int, optional] Number of bootstrap replications
- recenter [bool, optional] Whether to center the bootstrap variance estimator on the average of the bootstrap samples (True) or to center on the original sample estimate (False). Default is True.
- extra_kwargs [dict, optional] Dictionary of extra keyword arguments to pass to func

2.9. Time-series Bootstraps
Returns

ndarray  Bootstrap covariance estimator

Notes

func must have the signature

```python
func(params, *args, **kwargs)
```

where params are a 1-dimensional array, and *args and **kwargs are data used in the the bootstrap. The first argument, params, will be none when called using the original data, and will contain the estimate computed using the original data in bootstrap replications. This parameter is passed to allow parametric bootstrap simulation.

Examples

Bootstrap covariance of the mean

```python
>>> from arch.bootstrap import IIDBootstrap
>>> import numpy as np
>>> def func(x):
... return x.mean(axis=0)
>>> y = np.random.randn(1000, 3)
>>> bs = IIDBootstrap(y)
>>> cov = bs.cov(func, 1000)
```

Bootstrap covariance using a function that takes additional input

```python
>>> def func(x, stat='mean'):
... if stat=='mean':
... return x.mean(axis=0)
... elif stat=='var':
... return x.var(axis=0)
>>> cov = bs.cov(func, 1000, extra_kwargs={'stat':'var'})
```

Note: Note this is a generic example and so the class used should be the name of the required bootstrap

Return type  Union[float, ndarray]

arch.bootstrap.StationaryBootstrap.get_state

```python
StationaryBootstrap.get_state(self) \rightarrow Union[Dict[str, Any], Tuple[Any, ...]]
```

Gets the state of the bootstrap’s random number generator

Returns

{dict, tuple}  Dictionary or tuple containing the state.

Return type  Union[Dict[str, Any], Tuple[Any, ...]]
arch.bootstrap.StationaryBootstrap.reset

StationaryBootstrap.reset(self, use_seed: bool = True) \to None
Resets the bootstrap to either its initial state or the last seed.

Parameters

use_seed [bool, optional] Flag indicating whether to use the last seed if provided. If False
or if no seed has been set, the bootstrap will be reset to the initial state. Default is True

Return type None

arch.bootstrap.StationaryBootstrap.seed

StationaryBootstrap.seed(self, value: Union[int, List[int], numpy.ndarray]) \to None
Seeds the bootstrap's random number generator

Parameters

value [[int, List[int], ndarray]] Value to use as the seed.

Return type None

arch.bootstrap.StationaryBootstrap.set_state

StationaryBootstrap.set_state(self, state: Union[Dict[str, Any], Tuple[...]]) \to None
Sets the state of the bootstrap's random number generator

Parameters

state [[dict, tuple]] Dictionary or tuple containing the state.

Return type None

arch.bootstrap.StationaryBootstrap.update_indices

StationaryBootstrap.update_indices(self) \to numpy.ndarray
Update indices for the next iteration of the bootstrap. This must be overridden when creating new boot-
straps.

Return type ndarray

arch.bootstrap.StationaryBootstrap.var

StationaryBootstrap.var(self, func: Callable[..., Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series]], reps: int = 1000, recenter: bool = True, extra_kwargs: Union[Dict[str, Any], NoneType] = None) \to Union[float, numpy.ndarray]
Compute parameter variance using bootstrap

Parameters

func [callable] Callable function that returns the statistic of interest as a 1-d array
reps [int, optional] Number of bootstrap replications
**recenter** [bool, optional] Whether to center the bootstrap variance estimator on the average of the bootstrap samples (True) or to center on the original sample estimate (False). Default is True.

**extra_kwargs**: dict, optional Dictionary of extra keyword arguments to pass to func

**Returns**

**ndarray** Bootstrap variance estimator

**Notes**

func must have the signature

```
func(params, *args, **kwargs)
```

where params are a 1-dimensional array, and *args and **kwargs are data used in the the bootstrap. The first argument, params, will be none when called using the original data, and will contain the estimate computed using the original data in bootstrap replications. This parameter is passed to allow parametric bootstrap simulation.

**Examples**

Bootstrap covariance of the mean

```python
>>> from arch.bootstrap import IIDBootstrap
>>> import numpy as np
>>> def func(x):
... return x.mean(axis=0)
>>> y = np.random.randn(1000, 3)
>>> bs = IIDBootstrap(y)
>>> variances = bs.var(func, 1000)
```

Bootstrap covariance using a function that takes additional input

```python
>>> def func(x, stat='mean'):
... if stat=='mean':
... return x.mean(axis=0)
... elif stat=='var':
... return x.var(axis=0)
>>> variances = bs.var(func, 1000, extra_kwargs={'stat': 'var'})
```

**Note**: Note this is a generic example and so the class used should be the name of the required bootstrap

**Return type** Union[float, ndarray]

**Properties**

<table>
<thead>
<tr>
<th>Index</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>index</td>
<td>The current index of the bootstrap</td>
</tr>
<tr>
<td>random_state</td>
<td>Set or get the instance random state</td>
</tr>
</tbody>
</table>
arch.bootstrap.StationaryBootstrap.index

StationaryBootstrap.index
The current index of the bootstrap

Return type: ndarray

arch.bootstrap.StationaryBootstrap.random_state

StationaryBootstrap.random_state
Set or get the instance random state

Parameters

random_state [RandomState] RandomState instance used by bootstrap

Returns

RandomState RandomState instance used by bootstrap

Return type: RandomState

2.9.2 arch.bootstrap.CircularBlockBootstrap

class arch.bootstrap.CircularBlockBootstrap(block_size, *args, **kwargs)
Bootstrap based on blocks of the same length with end-to-start wrap around

Parameters

block_size [int] Size of block to use
args Positional arguments to bootstrap
kwargs Keyword arguments to bootstrap

Notes

Supports numpy arrays and pandas Series and DataFrames. Data returned has the same type as the input data. Data entered using keyword arguments is directly accessibly as an attribute.

To ensure a reproducible bootstrap, you must set the random_state attribute after the bootstrap has been created. See the example below. Note that random_state is a reserved keyword and any variable passed using this keyword must be an instance of RandomState.

Examples

Data can be accessed in a number of ways. Positional data is retained in the same order as it was entered when the bootstrap was initialized. Keyword data is available both as an attribute or using a dictionary syntax on kw_data.

```python
>>> from arch.bootstrap import CircularBlockBootstrap
>>> from numpy.random import standard_normal

>>> y = standard_normal((500, 1))
>>> x = standard_normal((500, 2))
>>> z = standard_normal(500)
```
Set the random_state if reproducibility is required

```python
>>> from numpy.random import RandomState

>>> rs = RandomState(1234)

>>> bs = CircularBlockBootstrap(17, x, y=y, z=z, random_state=rs)
```

### Attributes

- **data** [tuple] Two-element tuple with the pos_data in the first position and kw_data in the second (pos_data, kw_data)
- **pos_data** [tuple] Tuple containing the positional arguments (in the order entered)
- **kw_data** [dict] Dictionary containing the keyword arguments

### Methods

#### apply

```
apply(self, func, Union[numpy.ndarray, ...])
```

Applies a function to bootstrap replicated data

#### bootstrap

```
bootstrap(self, reps)
```

Iterator for use when bootstrapping

#### clone

```
clone(self, *args, ...)
```

Clones the bootstrap using different data.

#### conf_int

```
conf_int(self, func, Union[numpy.ndarray, ...])
```

#### Parameters

- **cov**
- **get_state**
- **reset**
- **seed**
- **set_state**
- **update_indices**
- **var**

### arch.bootstrap.CircularBlockBootstrap.apply

```
CircularBlockBootstrap.apply(self, func: Callable[..., Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series]], reps: int = 1000, extra_kwargs: Union[Dict[str, Any], NoneType] = None) → numpy.ndarray
```

Applies a function to bootstrap replicated data

#### Parameters

- **func** [callable] Function the computes parameter values. See Notes for requirements
- **reps** [int, optional] Number of bootstrap replications
**extra_kwargs** [dict, optional] Extra keyword arguments to use when calling `func`. Must not conflict with keyword arguments used to initialize bootstrap

**Returns**

**ndarray** reps by nparam array of computed function values where each row corresponds to a bootstrap iteration

**Notes**

When there are no extra keyword arguments, the function is called

```python
def func(params, *args, **kwargs)
```

where `args` and `kwargs` are the bootstrap version of the data provided when setting up the bootstrap. When extra keyword arguments are used, these are appended to `kwargs` before calling `func`

**Examples**

```python
>>> import numpy as np
>>> x = np.random.randn(1000, 2)
>>> from arch.bootstrap import IIDBootstrap
>>> bs = IIDBootstrap(x)
>>> def func(y):
... return y.mean(0)
>>> results = bs.apply(func, 100)
```

**Return type** ndarray

**arch.bootstrap.CircularBlockBootstrap.bootstrap**

CircularBlockBootstrap.bootstrap(self, reps: int) → Generator[Tuple[Tuple[Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series], ...], Dict[str, Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series]]], NoneType, NoneType]

Iterator for use when bootstrapping

**Parameters**

`reps` [int] Number of bootstrap replications

**Returns**

`generator` Generator to iterate over in bootstrap calculations

**Notes**

The iterator returns a tuple containing the data entered in positional arguments as a tuple and the data entered using keywords as a dictionary
Examples

The key steps are problem dependent and so this example shows the use as an iterator that does not produce any output:

```python
>>> from arch.bootstrap import IIDBootstrap
>>> import numpy as np
>>> bs = IIDBootstrap(np.arange(100), x=np.random.randn(100))
>>> for posdata, kwdata in bs.bootstrap(1000):
... # Do something with the positional data and/or keyword data
... pass
```

**Note:** Note this is a generic example and so the class used should be the name of the required bootstrap

Return type: Generator[Tuple[Tuple[Union[ndarray, DataFrame, Series]],...], Dict[str, Union[ndarray, DataFrame, Series]]], None, None

---

**arch.bootstrap.CircularBlockBootstrap.clone**


Clones the bootstrap using different data.

Parameters

args Positional arguments to bootstrap

kwargs Keyword arguments to bootstrap

Returns

bs Bootstrap instance

Return type: IIDBootstrap

---

**arch.bootstrap.CircularBlockBootstrap.conf_int**

CircularBlockBootstrap.conf_int(self, func: Callable[..., Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series]], reps: int = 1000, method: str = 'basic', size: float = 0.95, tail: str = 'two', extra_kwargs: Union[Dict[str, Any], NoneType] = None, reuse: bool = False, sampling: str = 'nonparametric', std_err_func: Union[Callable[..., Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series]], NoneType] = None, studentize_reps: int = 1000) -> numpy.ndarray

Parameters

func [callable] Function the computes parameter values. See Notes for requirements

reps [int, optional] Number of bootstrap replications

---
method [string, optional] One of ‘basic’, ‘percentile’, ‘studentized’, ‘norm’ (identical to ‘var’, ‘cov’), ‘bc’ (identical to ‘debiased’, ‘bias-corrected’), or ‘bca’
size [float, optional] Coverage of confidence interval
tail [string, optional] One of ‘two’, ‘upper’ or ‘lower’.
reuse [bool, optional] Flag indicating whether to reuse previously computed bootstrap results. This allows alternative methods to be compared without rerunning the bootstrap simulation. Reuse is ignored if reps is not the same across multiple runs, func changes across calls, or method is ‘studentized’.
sampling [string, optional] Type of sampling to use: ‘nonparametric’, ‘semi-parametric’ (or ‘semi’) or ‘parametric’. The default is ‘nonparametric’. See notes about the changes to func required when using ‘semi’ or ‘parametric’.
extra_kwargs [dict, optional] Extra keyword arguments to use when calling func and std_err_func, when appropriate
std_err_func [callable, optional] Function to use when standardizing estimated parameters when using the studentized bootstrap. Providing an analytical function eliminates the need for a nested bootstrap
studentize_reps [int, optional] Number of bootstraps to use in the inner bootstrap when using the studentized bootstrap. Ignored when std_err_func is provided

Returns
ndarray Computed confidence interval. Row 0 contains the lower bounds, and row 1 contains the upper bounds. Each column corresponds to a parameter. When tail is ‘lower’, all upper bounds are inf. Similarly, ‘upper’ sets all lower bounds to -inf.

Notes
When there are no extra keyword arguments, the function is called

```
func(*args, **kwargs)
```

where args and kwags are the bootstrap version of the data provided when setting up the bootstrap. When extra keyword arguments are used, these are appended to kwags before calling func.

The standard error function, if provided, must return a vector of parameter standard errors and is called

```
std_err_func(params, *args, **kwargs)
```

where params is the vector of estimated parameters using the same bootstrap data as in args and kwags.

The bootstraps are:
- ‘basic’ - Basic confidence using the estimated parameter and difference between the estimated parameter and the bootstrap parameters
- ‘percentile’ - Direct use of bootstrap percentiles
- ‘norm’ - Makes use of normal approximation and bootstrap covariance estimator
- ‘studentized’ - Uses either a standard error function or a nested bootstrap to estimate percentiles and the bootstrap covariance for scale
- ‘bc’ - Bias corrected using estimate bootstrap bias correction
- ‘bca’ - Bias corrected and accelerated, adding acceleration parameter to ‘bc’ method
Examples

```python
>>> import numpy as np
>>> def func(x):
... return x.mean(0)
>>> y = np.random.randn(1000, 2)
>>> from arch.bootstrap import IIDBootstrap
>>> bs = IIDBootstrap(y)
>>> ci = bs.conf_int(func, 1000)
```

Return type `ndarray`

**arch.bootstrap.CircularBlockBootstrap.cov**

CircularBlockBootstrap.cov(self, func: Callable[..., Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series]], reps: int = 1000, recenter: bool = True, extra_kwags: Union[Dict[str, Any], NoneType] = None) → Union[float, numpy.ndarray]

Compute parameter covariance using bootstrap

Parameters

func [callable] Callable function that returns the statistic of interest as a 1-d array
reps [int, optional] Number of bootstrap replications
recenter [bool, optional] Whether to center the bootstrap variance estimator on the average of the bootstrap samples (True) or to center on the original sample estimate (False). Default is True.
extra_kwags [dict, optional] Dictionary of extra keyword arguments to pass to func

Returns

ndarray Bootstrap covariance estimator

Notes

func must have the signature

```python
func(params, *args, **kwags)
```

where params are a 1-dimensional array, and *args and **kwags are data used in the the bootstrap. The first argument, params, will be none when called using the original data, and will contain the estimate computed using the original data in bootstrap replications. This parameter is passed to allow parametric bootstrap simulation.

Examples

Bootstrap covariance of the mean

```python
>>> from arch.bootstrap import IIDBootstrap
>>> import numpy as np
>>> def func(x):
... return x.mean(axis=0)
```
Bootstrap covariance using a function that takes additional input

```python
>>> def func(x, stat='mean'):
... if stat=='mean':
... return x.mean(axis=0)
... elif stat=='var':
... return x.var(axis=0)

>>> cov = bs.cov(func, 1000, extra_kwargs={'stat':'var'})
```

**Note:** Note this is a generic example and so the class used should be the name of the required bootstrap

**Return type** `Union[float, ndarray]`

```
arch.bootstrap.CircularBlockBootstrap.get_state

CircularBlockBootstrap.get_state(self) → Union[Dict[str, Any], Tuple[...]]

Gets the state of the bootstrap’s random number generator

Returns

{dict, tuple} Dictionary or tuple containing the state.

Return type `Union[Dict[str, Any], Tuple[...]]`

```
arch.bootstrap.CircularBlockBootstrap.reset

CircularBlockBootstrap.reset(self, use_seed: bool = True) → None

Resets the bootstrap to either its initial state or the last seed.

*Parameters*

use_seed [bool, optional] Flag indicating whether to use the last seed if provided. If False or if no seed has been set, the bootstrap will be reset to the initial state. Default is True

**Return type** None

```
arch.bootstrap.CircularBlockBootstrap.seed

CircularBlockBootstrap.seed(self, value: Union[int, List[int], numpy.ndarray]) → None

Seeds the bootstrap’s random number generator

Parameters

value [{int, List[int], ndarray}] Value to use as the seed.

Return type None
arch.bootstrap.CircularBlockBootstrap.set_state

CircularBlockBootstrap.set_state(self, state: Union[Dict[str, Any], Tuple[...]]) → None

Sets the state of the bootstrap’s random number generator

Parameters

state [(dict, tuple)] Dictionary or tuple containing the state.

Return type None

arch.bootstrap.CircularBlockBootstrap.update_indices

CircularBlockBootstrap.update_indices(self) → numpy.ndarray

Update indices for the next iteration of the bootstrap. This must be overridden when creating new bootstraps.

Return type ndarray

arch.bootstrap.CircularBlockBootstrap.var

CircularBlockBootstrap.var(self, func: Callable[..., Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series]], reps: int = 1000, recenter: bool = True, extra_kwargs: Union[Dict[str, Any], NoneType] = None) → Union[float, numpy.ndarray]

Compute parameter variance using bootstrap

Parameters

func [callable] Callable function that returns the statistic of interest as a 1-d array
reps [int, optional] Number of bootstrap replications
recenter [bool, optional] Whether to center the bootstrap variance estimator on the average of the bootstrap samples (True) or to center on the original sample estimate (False). Default is True.

extra_kwargs: dict, optional Dictionary of extra keyword arguments to pass to func

Returns

ndarray Bootstrap variance estimator

Notes

func must have the signature

```
def func(params, *args, **kwargs)
```

where params are a 1-dimensional array, and *args and **kwargs are data used in the bootstrap. The first argument, params, will be none when called using the original data, and will contain the estimate computed using the original data in bootstrap replications. This parameter is passed to allow parametric bootstrap simulation.
Examples

Bootstrap covariance of the mean

```python
>>> from arch.bootstrap import IIDBootstrap
>>> import numpy as np
>>> def func(x):
...    return x.mean(axis=0)
>>> y = np.random.randn(1000, 3)
>>> bs = IIDBootstrap(y)
>>> variances = bs.var(func, 1000)
```

Bootstrap covariance using a function that takes additional input

```python
>>> def func(x, stat='mean'):
...    if stat=='mean':
...        return x.mean(axis=0)
...    elif stat=='var':
...        return x.var(axis=0)
>>> variances = bs.var(func, 1000, extra_kwargs={'stat': 'var'})
```

Note: Note this is a generic example and so the class used should be the name of the required bootstrap

Return type Union[\text{float}, \text{ndarray}]

Properties

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>index</td>
<td>The current index of the bootstrap</td>
</tr>
<tr>
<td>random_state</td>
<td>Set or get the instance random state</td>
</tr>
</tbody>
</table>

arch.bootstrap.CircularBlockBootstrap.index

CircularBlockBootstrap.index

The current index of the bootstrap

Return type ndarray

arch.bootstrap.CircularBlockBootstrap.random_state

CircularBlockBootstrap.random_state

Set or get the instance random state

Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>random_state</td>
<td>[RandomState]</td>
</tr>
</tbody>
</table>

Returns

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>RandomState</td>
<td>RandomState</td>
</tr>
</tbody>
</table>

Return type RandomState
2.9.3 arch.bootstrap.MovingBlockBootstrap

```
class arch.bootstrap.MovingBlockBootstrap(block_size, *args, **kwargs)

  Bootstrap based on blocks of the same length without wrap around

  Parameters

    block_size  [int] Size of block to use
    args        Positional arguments to bootstrap
    kwargs      Keyword arguments to bootstrap

  Notes

  Supports numpy arrays and pandas Series and DataFrames. Data returned has the same type as the input date.
  Data entered using keyword arguments is directly accessibly as an attribute.
  To ensure a reproducible bootstrap, you must set the random_state attribute after the bootstrap has been
  created. See the example below. Note that random_state is a reserved keyword and any variable passed
  using this keyword must be an instance of RandomState.

  Examples

  Data can be accessed in a number of ways. Positional data is retained in the same order as it was entered when
  the bootstrap was initialized. Keyword data is available both as an attribute or using a dictionary syntax on
  kw_data.

  >>> from arch.bootstrap import MovingBlockBootstrap
  >>> from numpy.random import standard_normal
  >>>
  >>> y = standard_normal((500, 1))
  >>> x = standard_normal((500, 2))
  >>> z = standard_normal(500)
  >>> bs = MovingBlockBootstrap(7, x, y=y, z=z)
  >>> for data in bs.bootstrap(100):
  ...   bs_x = data[0][0]
  ...   bs_y = data[1]['y']
  ...   bs_z = bs.z

  Attributes

    data  [tuple] Two-element tuple with the pos_data in the first position and kw_data in the second
          (pos_data, kw_data)
    pos_data  [tuple] Tuple containing the positional arguments (in the order entered)
    kw_data  [dict] Dictionary containing the keyword arguments
```

Methods
Parameters

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>apply</code></td>
<td>Applies a function to bootstrap replicated data</td>
</tr>
<tr>
<td><code>bootstrap</code></td>
<td>Iterator for use when bootstrapping</td>
</tr>
<tr>
<td><code>clone</code></td>
<td>Clones the bootstrap using different data.</td>
</tr>
<tr>
<td><code>conf_int</code></td>
<td></td>
</tr>
</tbody>
</table>

arch.bootstrap.MovingBlockBootstrap.apply

```python
MovingBlockBootstrap.apply(self, func: Callable[...,
  Union[numpy.ndarray, pandas.core.frame.DataFrame,
  pandas.core.series.Series]], reps: int = 1000,
extra_kwargs: Union[Dict[str, Any], NoneType] = None) ->
numpy.ndarray
```

Applies a function to bootstrap replicated data

Parameters

- **func** [callable] Function the computes parameter values. See Notes for requirements
- **reps** [int, optional] Number of bootstrap replications
- **extra_kwargs** [dict, optional] Extra keyword arguments to use when calling func. Must not conflict with keyword arguments used to initialize bootstrap

Returns

- **ndarray** reps by nparam array of computed function values where each row corresponds to a bootstrap iteration

Notes

When there are no extra keyword arguments, the function is called

```python
func(params, *args, **kwargs)
```

where args and kwargs are the bootstrap version of the data provided when setting up the bootstrap. When extra keyword arguments are used, these are appended to kwargs before calling `func`

Examples

```python
>>> import numpy as np
>>> x = np.random.randn(1000, 2)
>>> from arch.bootstrap import IIDBootstrap
>>> bs = IIDBootstrap(x)
```
>>> def func(y):
... return y.mean(0)
>>> results = bs.apply(func, 100)

Return type ndarray

arch.bootstrap.MovingBlockBootstrap.bootstrap

MovingBlockBootstrap.bootstrap(self, reps: int) -> Generator[Tuple[Tuple[Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series], ...], Dict[str, Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series]], NoneType, NoneType]

Iterator for use when bootstrapping

Parameters

reps [int] Number of bootstrap replications

Returns

generator Generator to iterate over in bootstrap calculations

Notes

The iterator returns a tuple containing the data entered in positional arguments as a tuple and the data entered using keywords as a dictionary

Examples

The key steps are problem dependent and so this example shows the use as an iterator that does not produce any output

>>> from arch.bootstrap import IIDBootstrap
>>> import numpy as np
>>> bs = IIDBootstrap(np.arange(100), x=np.random.randn(100))
>>> for posdata, kwdata in bs.bootstrap(1000):
... # Do something with the positional data and/or keyword data
... pass

Note: Note this is a generic example and so the class used should be the name of the required bootstrap

Return type Generator[Tuple[Tuple[Union[numpy.ndarray, DataFrame, Series], ...], Dict[str, Union[numpy.ndarray, DataFrame, Series]], None, None]
arch.bootstrap.MovingBlockBootstrap.clone

Clones the bootstrap using different data.

Parameters

- **args** Positional arguments to bootstrap
- **kwargs** Keyword arguments to bootstrap

Returns

- bs Bootstrap instance

Return type IIDBootstrap

arch.bootstrap.MovingBlockBootstrap.conf_int

Parameters

- **func** [callable] Function the computes parameter values. See Notes for requirements
- **reps** [int, optional] Number of bootstrap replications
- **method** [string, optional] One of ‘basic’, ‘percentile’, ‘studentized’, ‘norm’ (identical to ‘var’, ‘cov’), ‘bc’ (identical to ‘debiased’, ‘bias-corrected’), or ‘bca’
- **size** [float, optional] Coverage of confidence interval
- **tail** [string, optional] One of ‘two’, ‘upper’ or ‘lower’.
- **reuse** [bool, optional] Flag indicating whether to reuse previously computed bootstrap results. This allows alternative methods to be compared without rerunning the bootstrap simulation. Reuse is ignored if reps is not the same across multiple runs, func changes across calls, or method is ‘studentized’.
- **sampling** [string, optional] Type of sampling to use: ‘nonparametric’, ‘semi-parametric’ (or ‘semi’) or ‘parametric’. The default is ‘nonparametric’. See notes about the changes to func required when using ‘semi’ or ‘parametric’.
- **extra_kwargs** [dict, optional] Extra keyword arguments to use when calling func and std_err_func, when appropriate
- **std_err_func** [callable, optional] Function to use when standardizing estimated parameters when using the studentized bootstrap. Providing an analytical function eliminates the need for a nested bootstrap
studentize_reps [int, optional] Number of bootstraps to use in the inner bootstrap when using the studentized bootstrap. Ignored when std_err_func is provided

Returns

ndarray Computed confidence interval. Row 0 contains the lower bounds, and row 1 contains the upper bounds. Each column corresponds to a parameter. When tail is ‘lower’, all upper bounds are inf. Similarly, ‘upper’ sets all lower bounds to -inf.

Notes

When there are no extra keyword arguments, the function is called

```
func(*args, **kwargs)
```

where args and kwargs are the bootstrap version of the data provided when setting up the bootstrap. When extra keyword arguments are used, these are appended to kwargs before calling func.

The standard error function, if provided, must return a vector of parameter standard errors and is called

```
std_err_func(params, *args, **kwargs)
```

where params is the vector of estimated parameters using the same bootstrap data as in args and kwargs.

The bootstraps are:

- ‘basic’ - Basic confidence using the estimated parameter and difference between the estimated parameter and the bootstrap parameters
- ‘percentile’ - Direct use of bootstrap percentiles
- ‘norm’ - Makes use of normal approximation and bootstrap covariance estimator
- ‘studentized’ - Uses either a standard error function or a nested bootstrap to estimate percentiles and the bootstrap covariance for scale
- ‘bc’ - Bias corrected using estimate bootstrap bias correction
- ‘bca’ - Bias corrected and accelerated, adding acceleration parameter to ‘bc’ method

Examples

```
>>> import numpy as np
>>> def func(x):
...     return x.mean(0)
>>> y = np.random.randn(1000, 2)
>>> from arch.bootstrap import IIDBootstrap
>>> bs = IIDBootstrap(y)
>>> ci = bs.conf_int(func, 1000)
```

Return type ndarray
arch.bootstrap.MovingBlockBootstrap.cov

MovingBlockBootstrap.cov(self, func: Callable[..., Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series]], reps: int = 1000, recenter: bool = True, extra_kwargs: Union[Dict[str, Any], NoneType] = None) -> Union[float, numpy.ndarray]

Compute parameter covariance using bootstrap

Parameters

- **func** [callable] Callable function that returns the statistic of interest as a 1-d array
- **reps** [int, optional] Number of bootstrap replications
- **recenter** [bool, optional] Whether to center the bootstrap variance estimator on the average of the bootstrap samples (True) or to center on the original sample estimate (False). Default is True.
- **extra_kwargs** [dict, optional] Dictionary of extra keyword arguments to pass to func

Returns

- **ndarray** Bootstrap covariance estimator

Notes

func must have the signature

```python
func(params, *args, **kwargs)
```

where params are a 1-dimensional array, and *args and **kwargs are data used in the the bootstrap. The first argument, params, will be none when called using the original data, and will contain the estimate computed using the original data in bootstrap replications. This parameter is passed to allow parametric bootstrap simulation.

Examples

Bootstrap covariance of the mean

```python
>>> from arch.bootstrap import IIDBootstrap
>>> import numpy as np
>>> def func(x):
...     return x.mean(axis=0)
>>> y = np.random.randn(1000, 3)
>>> bs = IIDBootstrap(y)
>>> cov = bs.cov(func, 1000)
```

Bootstrap covariance using a function that takes additional input

```python
>>> def func(x, stat='mean'):
...     if stat=='mean':
...         return x.mean(axis=0)
...     elif stat=='var':
...         return x.var(axis=0)
>>> cov = bs.cov(func, 1000, extra_kwargs={'stat':'var'})
```
Note: Note this is a generic example and so the class used should be the name of the required bootstrap

Return type Union[Union[Union[Union[float, ndarray]]]]

arch.bootstrap.MovingBlockBootstrap.get_state

MovingBlockBootstrap.get_state(self) → Union[Union[Union[Dict[str, Any], Tuple[Any, ...]]]]

Gets the state of the bootstrap’s random number generator

Returns

{dict, tuple} Dictionary or tuple containing the state.

Return type Union[Dict[str, Any], Tuple[Any, ...]]

arch.bootstrap.MovingBlockBootstrap.reset

MovingBlockBootstrap.reset(self, use_seed: bool = True) → None

Resets the bootstrap to either its initial state or the last seed.

Parameters

use_seed [bool, optional] Flag indicating whether to use the last seed if provided. If False
or if no seed has been set, the bootstrap will be reset to the initial state. Default is True

Return type None

arch.bootstrap.MovingBlockBootstrap.seed

MovingBlockBootstrap.seed(self, value: Union[Union[Union[int, List[int], ndarray]]]) → None

Seeds the bootstrap’s random number generator

Parameters

value [[int, List[int], ndarray]] Value to use as the seed.

Return type None

arch.bootstrap.MovingBlockBootstrap.set_state

MovingBlockBootstrap.set_state(self, state: Union[Union[Union[Dict[str, Any], Tuple[Any, ...]]]]) → None

Sets the state of the bootstrap’s random number generator

Parameters

state [[dict, tuple]] Dictionary or tuple containing the state.

Return type None
arch.bootstrap.MovingBlockBootstrap.update_indices

MovingBlockBootstrap.update_indices(self) → None

Update indices for the next iteration of the bootstrap. This must be overridden when creating new bootstraps.

Return type None

arch.bootstrap.MovingBlockBootstrap.var

MovingBlockBootstrap.var(self, func: Callable[..., Union[numpy.ndarray, pandas.core.frame.DataFrame, pandas.core.series.Series]], reps: int = 1000, recenter: bool = True, extra_kwags: Union[Dict[str, Any], NoneType] = None) → Union[float, numpy.ndarray]

Compute parameter variance using bootstrap

Parameters

func [callable] Callable function that returns the statistic of interest as a 1-d array
reps [int, optional] Number of bootstrap replications
recenter [bool, optional] Whether to center the bootstrap variance estimator on the average of the bootstrap samples (True) or to center on the original sample estimate (False). Default is True.
extra_kwags: dict, optional Dictionary of extra keyword arguments to pass to func

Returns

ndarray Bootstrap variance estimator

Notes

func must have the signature

```
func(params, *args, **kwargs)
```

where params are a 1-dimensional array, and *args and **kwags are data used in the the bootstrap. The first argument, params, will be none when called using the original data, and will contain the estimate computed using the original data in bootstrap replications. This parameter is passed to allow parametric bootstrap simulation.

Examples

Bootstrap covariance of the mean

```
>>> from arch.bootstrap import IIDBootstrap
>>> import numpy as np
>>> def func(x):
...     return x.mean(axis=0)
>>> y = np.random.randn(1000, 3)
>>> bs = IIDBootstrap(y)
>>> variances = bs.var(func, 1000)
```

Bootstrap covariance using a function that takes additional input
```python
>>> def func(x, stat='mean'):
...    if stat=='mean':
...        return x.mean(axis=0)
...    elif stat=='var':
...        return x.var(axis=0)

>>> variances = bs.var(func, 1000, extra_kwargs={'stat': 'var'})
```

Note: Note this is a generic example and so the class used should be the name of the required bootstrap

Return type `Union[float, ndarray]`

Properties

<table>
<thead>
<tr>
<th>index</th>
<th>The current index of the bootstrap</th>
</tr>
</thead>
<tbody>
<tr>
<td>random_state</td>
<td>Set or get the instance random state</td>
</tr>
</tbody>
</table>

arch.bootstrap.MovingBlockBootstrap.index

MovingBlockBootstrap.index

The current index of the bootstrap

Return type `ndarray`

arch.bootstrap.MovingBlockBootstrap.random_state

MovingBlockBootstrap.random_state

Set or get the instance random state

Parameters

- random_state [RandomState] RandomState instance used by bootstrap

Returns

- RandomState RandomState instance used by bootstrap

Return type `RandomState`

2.10 References

The bootstrap is a large area with a number of high-quality books. Leading references include

References

Articles used in the creation of this module include
This module contains a set of bootstrap-based multiple comparison procedures. These are designed to allow multiple models to be compared while controlling a the Familywise Error Rate, which is similar to the size of a test.

3.1 Multiple Comparisons

This setup code is required to run in an IPython notebook

```python
[1]:
import warnings
warnings.simplefilter('ignore')

# Reproducability
%matplotlib inline
import matplotlib.pyplot as plt
import seaborn
seaborn.set_style('darkgrid')
plt.rc("figure", figsize=(16, 6))
plt.rc("savefig", dpi=90)
plt.rc("font", family="sans-serif")
plt.rc("font", size=14)
```

```python
[2]:
import numpy as np

np.random.seed(23456)
# Common seed used throughout
seed = np.random.randint(0, 2**31 - 1)
```

The multiple comparison procedures all allow for examining aspects of superior predictive ability. There are three available:

- **SPA** - The test of Superior Predictive Ability, also known as the Reality Check (and accessible as `RealityCheck`) or the bootstrap data snooper, examines whether any model in a set of models can outperform a benchmark.
• **StepM** - The stepwise multiple testing procedure uses sequential testing to determine which models are superior to a benchmark.

• **MCS** - The model confidence set which computes the set of models which with performance indistinguishable from others in the set.

All procedures take **losses** as inputs. That is, smaller values are preferred to larger values. This is common when evaluating forecasting models where the loss function is usually defined as a positive function of the forecast error that is increasing in the absolute error. Leading examples are Mean Square Error (MSE) and Mean Absolute Deviation (MAD).

3.1.1 The test of Superior Predictive Ability (SPA)

This procedure requires a t-element array of benchmark losses and a t by k-element array of model losses. The null hypothesis is that no model is better than the benchmark, or

$$H_0 : \max_i E[L_i] \geq E[L_{bm}]$$

where L_i is the loss from model i and L_{bm} is the loss from the benchmark model.

This procedure is normally used when there are many competing forecasting models such as in the study of technical trading rules. The example below will make use of a set of models which are all equivalently good to a benchmark model and will serve as a size study.

Study Design

The study will make use of a measurement error in predictors to produce a large set of correlated variables that all have equal expected MSE. The benchmark will have identical measurement error and so all models have the same expected loss, although will have different forecasts.

The first block computed the series to be forecast.

```python
[3]: from numpy.random import randn
import statsmodels.api as sm

t = 1000
factors = randn(t, 3)
beta = np.array([1, 0.5, 0.1])
e = randn(t)
y = factors.dot(beta)
```

The next block computes the benchmark factors and the model factors by contaminating the original factors with noise. The models are estimated on the first 500 observations and predictions are made for the second 500. Finally, losses are constructed from these predictions.

```python
[4]: # Measurement noise
bm_factors = factors + randn(t, 3)
# Fit using first half, predict second half
bm_beta = sm.OLS(y[:500], bm_factors[:500]).fit().params
# MSE loss
bm_losses = (y[500:] - bm_factors[500:]).dot(bm_beta)**2.0
# Number of models
k = 500
model_factors = np.zeros((k, t, 3))
model_losses = np.zeros((500, k))
```

(continues on next page)
Add measurement noise
model_factors[i] = factors + randn(1000, 3)
Compute regression parameters
model_beta = sm.OLS(y[:500], model_factors[i, :500]).fit().params
Prediction and losses
model_losses[:, i] = (y[500:] - model_factors[i, 500:].dot(model_beta))**2.0

Finally the SPA can be used. The SPA requires the losses from the benchmark and the models as inputs. Other inputs allow the bootstrap sued to be changed or for various options regarding studentization of the losses. compute does the real work, and then pvalues contains the probability that the null is true given the realizations.

In this case, one would not reject. The three p-values correspond to different re-centerings of the losses. In general, the consistent p-value should be used. It should always be the case that

\[
lower \leq \text{consistent} \leq upper.
\]

See the original papers for more details.

```
[5]: from arch.bootstrap import SPA
    spa = SPA(bm_losses, model_losses)
    spa.seed(seed)
    spa.compute()
    spa.pvalues

[5]: lower  0.520
    consistent  0.723
    upper  0.733
    dtype: float64
```

The same blocks can be repeated to perform a simulation study. Here I only use 100 replications since this should complete in a reasonable amount of time. Also I set reps=250 to limit the number of bootstrap replications in each application of the SPA (the default is a more reasonable 1000).

```
[6]: # Save the pvalues
    pvalues = []
    b = 100
    seeds = np.random.randint(0, 2**31 - 1, b)
    # Repeat 100 times
    for j in range(b):
        if j % 10 == 0:
            print(j)
        factors = randn(t, 3)
        beta = np.array([1, 0.5, 0.1])
        e = randn(t)
        y = factors.dot(beta)

        # Measurement noise
        bm_factors = factors + randn(t, 3)
        # Fit using first half, predict second half
        bm_beta = sm.OLS(y[:500], bm_factors[:500]).fit().params
        # MSE loss
        bm_losses = (y[500:] - bm_factors[500:].dot(bm_beta))**2.0
    # Number of models
    k = 500
    model_factors = np.zeros((k, t, 3))
```

(continues on next page)
Finally the pvalues can be plotted. Ideally they should form a 45° line indicating the size is correct. Both the consistent and upper perform well. The lower has too many small p-values.

```python
import pandas as pd

pvalues = pd.DataFrame(pvalues)
for col in pvalues:
    values = pvalues[col].values
    values.sort()
    pvalues[col] = values
# Change the index so that the x-values are between 0 and 1
pvalues.index = np.linspace(0.005, .995, 100)
fig = pvalues.plot()
```
Power

The SPA also has power to reject then the null is violated. The simulation will be modified so that the amount of measurement error differs across models, and so that some models are actually better than the benchmark. The p-values should be small indicating rejection of the null.

```python
# Number of models
k = 500
model_factors = np.zeros((k, t, 3))
model_losses = np.zeros((500, k))
for i in range(k):
    scale = ((2500.0 - i) / 2500.0)
    model_factors[i] = factors + scale * randn(1000, 3)
    model_beta = sm.OLS(y[500:], model_factors[i, 500:]).fit().params
    # MSE loss
    model_losses[:, i] = (y[500:] - model_factors[i, 500:].dot(model_beta))**2.0

spa = SPA(bm_losses, model_losses)
spa.seed(seed)
spa.compute()
spa.pvalues
```

Here the average losses are plotted. The higher index models are clearly better than the lower index models – and the benchmark model (which is identical to model.0).

```python
model_losses = pd.DataFrame(model_losses, columns=['model.' + str(i) for i in range(k)])
avg_model_losses = pd.DataFrame(model_losses.mean(0), columns=['Average loss'])
fig = avg_model_losses.plot(style=['o'])
```

3.1.2 Stepwise Multiple Testing (StepM)

Stepwise Multiple Testing is similar to the SPA and has the same null. The primary difference is that it identifies the set of models which are better than the benchmark, rather than just asking the basic question if any model is better.
from arch.bootstrap import StepM

stepm = StepM(bm_losses, model_losses)
stepm.compute()
print('Model indices:')
print([model.split('.') for model in stepm.superior_models])

Model indices:
 '261', '262', '263', '266', '272', '275', '279', '280', '281', '282', '286', '291',
 '294', '298', '299', '300', '305', '306', '310', '312', '316', '318', '325', '326',
 '395', '398', '399', '400', '401', '402', '403', '404', '405', '406', '407', '408',
 '410', '411', '412', '413', '414', '417', '419', '420', '421', '422', '423', '424',
 '477', '478', '479', '480', '481', '482', '483', '484', '485', '486', '487', '488',
 '489', '490', '491', '492', '493', '494', '495', '496', '497', '498', '499']

better_models = pd.concat([model_losses.mean(0), model_losses.mean(0)], 1)
better_models.columns = ['Same or worse', 'Better']
better = better_models.index.isin(stepm.superior_models)
worse = np.logical_not(better)
better_models.loc[better, 'Same or worse'] = np.nan
better_models.loc[worse, 'Better'] = np.nan
fig = better_models.plot(style=['o', 's'], rot=270)

3.1.3 The Model Confidence Set

The model confidence set takes a set of losses as its input and finds the set which are not statistically different from each other while controlling the familywise error rate. The primary output is a set of p-values, where models with
a p-value above the size are in the MCS. Small p-values indicate that the model is easily rejected from the set that includes the best.

```python
[12]: from arch.bootstrap import MCS

# Limit the size of the set
losses = model_losses.iloc[:, ::20]
mcs = MCS(losses, size=0.10)
mcs.compute()
print('MCS P-values')
print(mcs.pvalues)
print('Included')
included = mcs.included
print([model.split('.')[1] for model in included])
print('Excluded')
excluded = mcs.excluded
print([model.split('.')[1] for model in excluded])

MCS P-values

<table>
<thead>
<tr>
<th>Model name</th>
<th>Pvalue</th>
</tr>
</thead>
<tbody>
<tr>
<td>model.60</td>
<td>0.000</td>
</tr>
<tr>
<td>model.80</td>
<td>0.001</td>
</tr>
<tr>
<td>model.140</td>
<td>0.003</td>
</tr>
<tr>
<td>model.40</td>
<td>0.004</td>
</tr>
<tr>
<td>model.20</td>
<td>0.004</td>
</tr>
<tr>
<td>model.100</td>
<td>0.004</td>
</tr>
<tr>
<td>model.120</td>
<td>0.008</td>
</tr>
<tr>
<td>model.0</td>
<td>0.008</td>
</tr>
<tr>
<td>model.220</td>
<td>0.029</td>
</tr>
<tr>
<td>model.260</td>
<td>0.109</td>
</tr>
<tr>
<td>model.160</td>
<td>0.136</td>
</tr>
<tr>
<td>model.240</td>
<td>0.136</td>
</tr>
<tr>
<td>model.200</td>
<td>0.136</td>
</tr>
<tr>
<td>model.180</td>
<td>0.378</td>
</tr>
<tr>
<td>model.320</td>
<td>0.475</td>
</tr>
<tr>
<td>model.420</td>
<td>0.551</td>
</tr>
<tr>
<td>model.400</td>
<td>0.651</td>
</tr>
<tr>
<td>model.360</td>
<td>0.846</td>
</tr>
<tr>
<td>model.340</td>
<td>0.854</td>
</tr>
<tr>
<td>model.280</td>
<td>0.854</td>
</tr>
<tr>
<td>model.460</td>
<td>0.854</td>
</tr>
<tr>
<td>model.380</td>
<td>0.854</td>
</tr>
<tr>
<td>model.300</td>
<td>0.854</td>
</tr>
<tr>
<td>model.480</td>
<td>0.854</td>
</tr>
<tr>
<td>model.440</td>
<td>1.000</td>
</tr>
</tbody>
</table>

Included

Excluded
['0', '100', '120', '140', '20', '220', '40', '60', '80']

[13]: status = pd.DataFrame([losses.mean(0), losses.mean(0)],
                          index=['Excluded', 'Included']).T
status.loc[status.index.isin(included), 'Excluded'] = np.nan
status.loc[status.index.isin(excluded), 'Included'] = np.nan
fig = status.plot(style=['o', 's'])

3.1. Multiple Comparisons 253
3.2 Module Reference

3.2.1 Test of Superior Predictive Ability (SPA), Reality Check

The test of Superior Predictive Ability (Hansen 2005), or SPA, is an improved version of the Reality Check (White 2000). It tests whether the best forecasting performance from a set of models is better than that of the forecasts from a benchmark model. A model is “better” if its losses are smaller than those from the benchmark. Formally, it tests the null

$$H_0 : \max_i E[L_i] \geq E[L_{bm}]$$

where $L_i$ is the loss from model $i$ and $L_{bm}$ is the loss from the benchmark model. The alternative is

$$H_1 : \min_i E[L_i] < E[L_{bm}]$$

This procedure accounts for dependence between the losses and the fact that there are potentially alternative models being considered.

Note: Also callable using `RealityCheck`

SPA(benchmark, models[, block_size, reps, ...])

Implementation of the Test of Superior Predictive Ability (SPA), which is also known as the Reality Check or Bootstrap Data Snooper.

arch.bootstrap.SPA

class arch.bootstrap.SPA(benchmark, models, block_size=None, reps=1000, bootstrap='stationary', studentize=True, nested=False)

Implementation of the Test of Superior Predictive Ability (SPA), which is also known as the Reality Check or Bootstrap Data Snooper.

Parameters

- **benchmark** ([ndarray, Series]) T element array of benchmark model losses
- **models** ([ndarray, DataFrame]) T by k element array of alternative model losses
block_size [int, optional] Length of window to use in the bootstrap. If not provided, \( \sqrt{T} \) is used. In general, this should be provided and chosen to be appropriate for the data.

reps [int, optional] Number of bootstrap replications to uses. Default is 1000.

bootstrap [str, optional] Bootstrap to use. Options are ‘stationary’ or ‘sb’: Stationary bootstrap (Default) ‘circular’ or ‘cbb’: Circular block bootstrap ‘moving block’ or ‘mbb’: Moving block bootstrap

studentize [bool] Flag indicating to studentize loss differentials. Default is True

nested=False Flag indicating to use a nested bootstrap to compute variances for studentization. Default is False. Note that this can be slow since the procedure requires k extra bootstraps.

See also:

StepM

Notes

The three p-value correspond to different re-centering decisions.

- Upper: Never recenter to all models are relevant to distribution
- Consistent: Only recenter if closer than a \( \log(\log(t)) \) bound
- Lower: Never recenter a model if worse than benchmark

References


Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>better_models</td>
<td>(self, pvalue, pvalue_type) → ( \text{Union[numpy.ndarray, List[Hashable]]} ) Returns set of models rejected as being equal-or-worse than the benchmark</td>
</tr>
<tr>
<td>compute</td>
<td>(self) → Compute the bootstrap pvalue.</td>
</tr>
<tr>
<td>critical_values</td>
<td>(self, pvalue) → Returns data-dependent critical values</td>
</tr>
<tr>
<td>reset</td>
<td>(self) → Reset the bootstrap to its initial state.</td>
</tr>
<tr>
<td>seed</td>
<td>(self, value, List[int], numpy.ndarray) → Seed the bootstrap’s random number generator</td>
</tr>
<tr>
<td>subset</td>
<td>(self, selector) → Sets a list of active models to run the SPA on.</td>
</tr>
</tbody>
</table>

arch.bootstrap.SPA.better_models

SPA.better_models (self, pvalue: float = 0.05, pvalue_type: str = ‘consistent’) → \( \text{Union[numpy.ndarray, List[Hashable]]} \) Returns set of models rejected as being equal-or-worse than the benchmark

Parameters

pvalue [float, optional] P-value in (0,1) to use when computing superior models

pvalue_type [str, optional] String in ‘lower’, ‘consistent’, or ‘upper’ indicating which critical value to use.
Returns

**indices** [list] List of column names or indices of the superior models. Column names are returned if models is a DataFrame.

Notes

List of superior models returned is always with respect to the initial set of models, even when using subset().

Return type **Union[ndarray, List[Hashable]]**

---

**arch.bootstrap.SPA.compute**

SPA.compute(*self*) → None

Compute the bootstrap pvalue.

Notes

Must be called before accessing the pvalue.

Return type None

---

**arch.bootstrap.SPA.critical_values**

SPA.critical_values(*self*, **pvalue**: float = 0.05) → pandas.core.series.Series

Returns data-dependent critical values

Parameters

pvalue [float, optional] P-value in (0,1) to use when computing the critical values.

Returns

crit_vals [Series] Series containing critical values for the lower, consistent and upper methodologies

Return type Series

---

**arch.bootstrap.SPA.reset**

SPA.reset(*self*) → None

Reset the bootstrap to its initial state.

Return type None

---

**arch.bootstrap.SPA.seed**

SPA.seed(*self*, **value**: Union[int, List[int], numpy.ndarray]) → None

Seed the bootstrap’s random number generator

Parameters

value [[int, List[int], ndarray[int]]] Integer to use as the seed
Return type None

`arch.bootstrap.SPA.subset`

`SPA.subset (self, selector: numpy.ndarray) → None`
Sets a list of active models to run the SPA on. Primarily for internal use.

Parameters

selector [ndarray] Boolean array indicating which columns to use when computing the p-values. This is primarily for use by StepM.

Return type None

Properties

`pvalues`
P-values corresponding to the lower, consistent and upper p-values.

`arch.bootstrap.SPA.pvalues`

`SPA.pvalues`
P-values corresponding to the lower, consistent and upper p-values.

Returns

pvals [Series] Three p-values corresponding to the lower bound, the consistent estimator, and the upper bound.

Return type Series

3.2.2 Stepwise Multiple Testing (StepM)

The Stepwise Multiple Testing procedure (Romano & Wolf (2005)) is closely related to the SPA, except that it returns a set of models that are superior to the benchmark model, rather than the p-value from the null. They are so closely related that StepM is essentially a wrapper around SPA with some small modifications to allow multiple calls.

`StepM(benchmark, models[, size, block_size, ...])`
Implementation of Romano and Wolf’s StepM multiple comparison procedure

`arch.bootstrap.StepM`

class `arch.bootstrap.StepM (benchmark, models, size=0.05, block_size=None, reps=1000, bootstrap='stationary', studentize=True, nested=False)`

Implementation of Romano and Wolf’s StepM multiple comparison procedure

Parameters

benchmark [{ndarray, Series}] T element array of benchmark model losses
models [{ndarray, DataFrame}] T by k element array of alternative model losses

3.2. Module Reference
size [float, optional] Value in (0,1) to use as the test size when implementing the comparison. Default value is 0.05.

block_size [int, optional] Length of window to use in the bootstrap. If not provided, \( \sqrt{T} \) is used. In general, this should be provided and chosen to be appropriate for the data.

reps [int, optional] Number of bootstrap replications to uses. Default is 1000.

bootstrap [str, optional] Bootstrap to use. Options are ‘stationary’ or ‘sb’: Stationary bootstrap (Default) ‘circular’ or ‘cbb’: Circular block bootstrap ‘moving block’ or ‘mbb’: Moving block bootstrap

studentize [bool, optional] Flag indicating to studentize loss differentials. Default is True

nested [bool, optional] Flag indicating to use a nested bootstrap to compute variances for studentization. Default is False. Note that this can be slow since the procedure requires \( k \) extra bootstraps.

See also:

SPA

Notes

The size controls the Family Wise Error Rate (FWER) since this is a multiple comparison procedure. Uses SPA and the consistent selection procedure.

References


Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>compute(self)</code></td>
<td>Compute the set of superior models.</td>
</tr>
<tr>
<td><code>reset(self)</code></td>
<td>Reset the bootstrap to its initial state.</td>
</tr>
<tr>
<td><code>seed(self, value, List[int], numpy.ndarray)</code></td>
<td>Seed the bootstrap’s random number generator</td>
</tr>
</tbody>
</table>

\[\text{arch.bootstrap.StepM.compute}\]

\[\text{StepM}\textunderscore\text{compute}(self) \rightarrow \text{None}\]

Compute the set of superior models.

\[\text{Return type} \quad \text{None}\]

\[\text{arch.bootstrap.StepM.reset}\]

\[\text{StepM}\textunderscore\text{reset}(self) \rightarrow \text{None}\]

Reset the bootstrap to its initial state.

\[\text{Return type} \quad \text{None}\]
arch.bootstrap.StepM.seed

StepM.seed(self, value: Union[int, List[int], numpy.ndarray]) → None
Seed the bootstrap’s random number generator

Parameters

value [[int, List[int], ndarray[int]]] Integer to use as the seed

Return type None

Properties

superior_models List of the indices or column names of the superior models

arch.bootstrap.StepM.superior_models

StepM.superior_models
List of the indices or column names of the superior models

Returns

list List of superior models. Contains column indices if models is an array or contains column names if models is a DataFrame.

Return type List[Hashable]

3.2.3 Model Confidence Set (MCS)

The Model Confidence Set (Hansen, Lunde & Nason (2011)) differs from other multiple comparison procedures in that there is no benchmark. The MCS attempts to identify the set of models which produce the same expected loss, while controlling the probability that a model that is worse than the best model is in the model confidence set. Like the other MCPs, it controls the Familywise Error Rate rather than the usual test size.

MCS(losses, size[, reps, block_size, . . . ]) Implementation of the Model Confidence Set (MCS)

arch.bootstrap.MCS

class arch.bootstrap.MCS(losses, size, reps=1000, block_size=None, method='R', bootstrap='stationary')
Implementation of the Model Confidence Set (MCS)

Parameters

losses [[ndarray, DataFrame]] T by k array containing losses from a set of models
size [float, optional] Value in (0,1) to use as the test size when implementing the mcs. Default value is 0.05.
block_size [int, optional] Length of window to use in the bootstrap. If not provided, sqrt(T) is used. In general, this should be provided and chosen to be appropriate for the data.
**method**  [[‘max’, ‘R’], optional] MCS test and elimination implementation method, either ‘max’ or ‘R’. Default is ‘R’.

**reps**  [int, optional] Number of bootstrap replications to uses. Default is 1000.

**bootstrap**  [str, optional] Bootstrap to use. Options are ‘stationary’ or ‘sb’: Stationary bootstrap (Default) ‘circular’ or ‘cbb’: Circular block bootstrap ‘moving block’ or ‘mbb’: Moving block bootstrap

**References**


**Methods**

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>compute(self)</code></td>
<td>Compute the set of models in the confidence set.</td>
</tr>
<tr>
<td><code>reset(self)</code></td>
<td>Reset the bootstrap to it’s initial state.</td>
</tr>
<tr>
<td><code>seed(self, value: Union[int, List[int], numpy.ndarray])</code></td>
<td>Seed the bootstrap’s random number generator</td>
</tr>
</tbody>
</table>

**arch.bootstrap.MCS.compute**

`MCS.compute(self) → None`

Compute the set of models in the confidence set.

**Return type**  None

**arch.bootstrap.MCS.reset**

`MCS.reset(self) → None`

Reset the bootstrap to it’s initial state.

**Return type**  None

**arch.bootstrap.MCS.seed**

`MCS.seed(self, value: Union[int, List[int], numpy.ndarray]) → None`

Seed the bootstrap’s random number generator

**Parameters**

- **value**  [[int, List[int], ndarray[int]]] Integer to use as the seed

**Return type**  None

**Properties**

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>excluded</code></td>
<td>List of model indices that are excluded from the MCS</td>
</tr>
<tr>
<td><code>included</code></td>
<td>List of model indices that are included in the MCS</td>
</tr>
<tr>
<td><code>pvalues</code></td>
<td>Model p-values for inclusion in the MCS</td>
</tr>
</tbody>
</table>
arch.bootstrap.MCS.excluded

MCS.excluded
List of model indices that are excluded from the MCS

Returns

excluded [list] List of column indices or names of the excluded models

Return type List[Hashable]

arch.bootstrap.MCS.included

MCS.included
List of model indices that are included in the MCS

Returns

included [list] List of column indices or names of the included models

Return type List[Hashable]

arch.bootstrap.MCS.pvalues

MCS.pvalues
Model p-values for inclusion in the MCS

Returns

pvalues [DataFrame] DataFrame where the index is the model index (column or name) containing the smallest size where the model is in the MCS.

Return type DataFrame

3.3 References

Articles used in the creation of this module include
Many time series are highly persistent, and determining whether the data appear to be stationary or contains a unit root is the first step in many analyses. This module contains a number of routines:

- Augmented Dickey-Fuller (ADF)
- Dickey-Fuller GLS (DFGLS)
- Phillips-Perron (PhillipsPerron)
- KPSS (KPSS)
- Zivot-Andrews (ZivotAndrews)
- Variance Ratio (VarianceRatio)
- Automatic Bandwidth Selection (arch.unitroot.auto_bandwidth())

The first four all start with the null of a unit root and have an alternative of a stationary process. The final test, KPSS, has a null of a stationary process with an alternative of a unit root.

### 4.1 Introduction

All tests expect a 1-d series as the first input. The input can be any array that can squeeze into a 1-d array, a pandas Series or a pandas DataFrame that contains a single variable.

All tests share a common structure. The key elements are:

- **stat** - Returns the test statistic
- **pvalue** - Returns the p-value of the test statistic
- **lags** - Sets or gets the number of lags used in the model. In most test, can be None to trigger automatic selection.
- **trend** - Sets or gets the trend used in the model. Supported trends vary by model, but include:
  - ‘nc’: No constant
  - ‘c’: Constant
– ‘ct’: Constant and time trend
– ‘ctt’: Constant, time trend and quadratic time trend

• summary() - Returns a summary object that can be printed to get a formatted table

### 4.1.1 Basic Example

This basic example show the use of the Augmented-Dickey fuller to test whether the default premium, defined as the difference between the yields of large portfolios of BAA and AAA bonds. This example uses a constant and time trend.

```python
import datetime as dt
import pandas_datareader.data as web
from arch.unitroot import ADF

start = dt.datetime(1919, 1, 1)
end = dt.datetime(2014, 1, 1)

df = web.DataReader(['AAA', 'BAA'], 'fred', start, end)
df['diff'] = df['BAA'] - df['AAA']
adf = ADF(df['diff'])
adf.trend = 'ct'
print(adf.summary())
```

which yields

```
Augmented Dickey-Fuller Results

Test Statistic -3.448
P-value 0.045
Lags 21

Trend: Constant and Linear Time Trend
Critical Values: -3.97 (1%), -3.41 (5%), -3.13 (10%)
Null Hypothesis: The process contains a unit root.
Alternative Hypothesis: The process is weakly stationary.
```

### 4.2 Unit Root Testing

*This setup code is required to run in an IPython notebook*

[1]:
```python
import warnings
warnings.simplefilter('ignore')

%matplotlib inline
import matplotlib.pyplot as plt
import seaborn

seaborn.set_style('darkgrid')
plt.rc("figure", figsize=(16, 6))
plt.rc("savefig", dpi=90)
```

(continues on next page)
4.2.1 Setup

Most examples will make use of the Default premium, which is the difference between the yields of BAA and AAA rated corporate bonds. The data is downloaded from FRED using pandas.

```python
import pandas as pd
import statsmodels.api as sm
import arch.data.default

default_data = arch.data.default.load()
default = default_data.BAA.copy()
default.name = 'default'
default = default - default_data.AAA.values
fig = default.plot()
```

The Default premium is clearly highly persistent. A simple check of the autocorrelations confirms this.

```python
acf = pd.DataFrame(sm.tsa.stattools.acf(default), columns=['ACF'])
fig = acf[1:].plot(kind='bar', title='Autocorrelations')
```
4.2.2 Augmented Dickey-Fuller Testing

The Augmented Dickey-Fuller test is the most common unit root test used. It is a regression of the first difference of the variable on its lagged level as well as additional lags of the first difference. The null is that the series contains a unit root, and the (one-sided) alternative is that the series is stationary.

By default, the number of lags is selected by minimizing the AIC across a range of lag lengths (which can be set using \texttt{max\_lag} when initializing the model). Additionally, the basic test includes a constant in the ADF regression.

These results indicate that the Default premium is stationary.

```python
from arch.unitroot import ADF
adf = ADF(default)
print(adf.summary().as_text())
```

<table>
<thead>
<tr>
<th>Augmented Dickey-Fuller Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test Statistic: -3.356</td>
</tr>
<tr>
<td>P-value: 0.013</td>
</tr>
<tr>
<td>Lags: 21</td>
</tr>
</tbody>
</table>

Trend: Constant
Critical Values: -3.44 (1%), -2.86 (5%), -2.57 (10%)

Null Hypothesis: The process contains a unit root.
Alternative Hypothesis: The process is weakly stationary.

The number of lags can be directly set using \texttt{lags}. Changing the number of lags makes no difference to the conclusion.

Note: The ADF assumes residuals are white noise, and that the number of lags is sufficient to pick up any dependence in the data.
Setting the number of lags

```
[5]: adf.lags = 5
print(adf.summary().as_text())
```

```
Augmented Dickey-Fuller Results
=====================================
Test Statistic -3.582
P-value 0.006
Lags 5

Trend: Constant
Critical Values: -3.44 (1%), -2.86 (5%), -2.57 (10%)
Null Hypothesis: The process contains a unit root.
Alternative Hypothesis: The process is weakly stationary.
```

Deterministic terms

The deterministic terms can be altered using `trend`. The options are:
- `'nc'`: No deterministic terms
- `'c'`: Constant only
- `'ct'`: Constant and time trend
- `'ctt'`: Constant, time trend and time-trend squared

Changing the type of constant also makes no difference for this data.

```
[6]: adf.trend = 'ct'
print(adf.summary().as_text())
```

```
Augmented Dickey-Fuller Results
=====================================
Test Statistic -3.786
P-value 0.017
Lags 5

Trend: Constant and Linear Time Trend
Critical Values: -3.97 (1%), -3.41 (5%), -3.13 (10%)
Null Hypothesis: The process contains a unit root.
Alternative Hypothesis: The process is weakly stationary.
```

Regression output

The ADF uses a standard regression when computing results. These can be accessed using `regression`.

```
[7]: reg_res = adf.regression
print(reg_res.summary().as_text())
```

```
OLS Regression Results
==
Dep. Variable: y R-squared: 0.095
Model: OLS Adj. R-squared: 0.090
==
(continues on next page)
Method: Least Squares F-statistic: 17.83
Date: Wed, 29 Jan 2020 Prob (F-statistic): 1.30e-22
Time: 18:15:39 Log-Likelihood: 630.15
Df Model: 7
Covariance Type: nonrobust

==
| coef | std err | t | P>|t| | [0.025 | 0.975 |
|-------------|----------|------|------|-------|-------|
| Level.L1 | -0.0248 | 0.007| -3.786| 0.000 | -0.038| -0.012|
| Diff.L1 | 0.2229 | 0.029| 7.669 | 0.000 | 0.166 | 0.280|
| Diff.L2 | -0.0525 | 0.030| -1.769| 0.077 | -0.111| 0.006|
| Diff.L3 | -0.1363 | 0.029| -4.642| 0.000 | -0.194| -0.079|
| Diff.L4 | -0.0510 | 0.030| -1.727| 0.084 | -0.109| 0.007|
| Diff.L5 | 0.0440 | 0.029| 1.516 | 0.130 | -0.013| 0.101|
| const | 0.0383 | 0.013| 2.858 | 0.004 | 0.012 | 0.065|
| trend | -1.586e-05 | 1.29e-05 | -1.230 | 0.219 | -4.11e-05 | 9.43e-06 |

Omnibus: 665.553 Durbin-Watson: 2.000
Prob(Omnibus): 0.000 Jarque-Bera (JB): 146083.295
Skew: -1.425 Prob(JB): 0.00
Kurtosis: 57.113 Cond. No. 5.70e+03

Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 5.7e+03. This might indicate that there are strong multicollinearity or other numerical problems.

```python
import matplotlib.pyplot as plt
import pandas as pd

df = pd.DataFrame(reg_res.resid)
df.index = default.index[6:]
df.columns = ['resids']
fig = df.plot()
```

![Residuals plot](image)
Since the number lags was directly set, it is good to check whether the residuals appear to be white noise.

```python
[9]: acf = pd.DataFrame(sm.tsa.stattools.acf(reg_res.resid), columns=['ACF'])
fig = acf[1:].plot(kind='bar', title='Residual Autocorrelations')
```

![Residual Autocorrelations](image)

4.2.3 Dickey-Fuller GLS Testing

The Dickey-Fuller GLS test is an improved version of the ADF which uses a GLS-detrending regression before running an ADF regression with no additional deterministic terms. This test is only available with a constant or constant and time trend (`trend='c'` or `trend='ct'`).

The results of this test agree with the ADF results.

```python
[10]: from arch.unitroot import DFGLS
dfgls = DFGLS(default)
print(dfgls.summary().as_text())
```

Dickey-Fuller GLS Results

Test Statistic -2.322
P-value 0.020
Lags 21

Trend: Constant
Critical Values: -2.59 (1%), -1.96 (5%), -1.64 (10%)
Null Hypothesis: The process contains a unit root.
Alternative Hypothesis: The process is weakly stationary.

The trend can be altered using `trend`. The conclusion is the same.

```python
[11]: dfgls.trend = 'ct'
print(dfgls.summary().as_text())
```

Dickey-Fuller GLS Results

Test Statistic -3.464
P-value 0.009
Lags 21

(continues on next page)
4.2.4 Phillips-Perron Testing

The Phillips-Perron test is similar to the ADF except that the regression run does not include lagged values of the first differences. Instead, the PP test fixed the t-statistic using a long run variance estimation, implemented using a Newey-West covariance estimator.

By default, the number of lags is automatically set, although this can be overridden using `lags`.

```python
from arch.unitroot import PhillipsPerron
pp = PhillipsPerron(default)
print(pp.summary().as_text())
```

Phillips-Perron Test (Z-tau)
```
Test Statistic -3.898
P-value 0.002
Lags 23
```

Trend: Constant
Critical Values: -3.44 (1%), -2.86 (5%), -2.57 (10%)
Null Hypothesis: The process contains a unit root.
Alternative Hypothesis: The process is weakly stationary.

It is important that the number of lags is sufficient to pick up any dependence in the data.

```python
pp.lags = 12
print(pp.summary().as_text())
```

Phillips-Perron Test (Z-tau)
```
Test Statistic -4.024
P-value 0.001
Lags 12
```

Trend: Constant
Critical Values: -3.44 (1%), -2.86 (5%), -2.57 (10%)
Null Hypothesis: The process contains a unit root.
Alternative Hypothesis: The process is weakly stationary.

The trend can be changed as well.

```python
pp.trend = 'ct'
print(pp.summary().as_text())
```

Phillips-Perron Test (Z-tau)
```
```
Finally, the PP testing framework includes two types of tests. One which uses an ADF-type regression of the first difference on the level, the other which regresses the level on the level. The default is the tau test, which is similar to an ADF regression, although this can be changed using test_type='rho'.

```python
[15]: pp.test_type = 'rho'
print(pp.summary().as_text())
```

Phillips-Perron Test (Z-rho)

<table>
<thead>
<tr>
<th>Test Statistic</th>
<th>-36.114</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-value</td>
<td>0.000</td>
</tr>
<tr>
<td>Lags</td>
<td>12</td>
</tr>
</tbody>
</table>

Trend: Constant and Linear Time Trend
Critical Values: -29.16 (1%), -21.60 (5%), -18.17 (10%)
Null Hypothesis: The process contains a unit root.
Alternative Hypothesis: The process is weakly stationary.

4.2.5 KPSS Testing

The KPSS test differs from the three previous in that the null is a stationary process and the alternative is a unit root.

Note that here the null is rejected which indicates that the series might be a unit root.

```python
[16]: from arch.unitroot import KPSS
kpss = KPSS(default)
print(kpss.summary().as_text())
```

KPSS Stationarity Test Results

<table>
<thead>
<tr>
<th>Test Statistic</th>
<th>1.088</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-value</td>
<td>0.002</td>
</tr>
<tr>
<td>Lags</td>
<td>20</td>
</tr>
</tbody>
</table>

Trend: Constant
Critical Values: 0.74 (1%), 0.46 (5%), 0.35 (10%)
Null Hypothesis: The process is weakly stationary.
Alternative Hypothesis: The process contains a unit root.

Changing the trend does not alter the conclusion.

```python
[17]: kpss.trend = 'ct'
print(kpss.summary().as_text())
```
KPSS Stationarity Test Results
====================================
Test Statistic 0.393
P-value 0.000
Lags 20

Trend: Constant and Linear Time Trend
Critical Values: 0.22 (1%), 0.15 (5%), 0.12 (10%)
Null Hypothesis: The process is weakly stationary.
Alternative Hypothesis: The process contains a unit root.

4.2.6 Zivot-Andrews Test

The Zivot-Andrews test allows the possibility of a single structural break in the series. Here we test the default using the test.

[18]: `from arch.unitroot import ZivotAndrews`

`za = ZivotAndrews(default)`
`print(za.summary().as_text())`

Zivot-Andrews Results
====================================
Test Statistic -4.900
P-value 0.040
Lags 21

Trend: Constant
Critical Values: -5.28 (1%), -4.81 (5%), -4.57 (10%)
Null Hypothesis: The process contains a unit root with a single structural break.
Alternative Hypothesis: The process is trend and break stationary.

4.2.7 Variance Ratio Testing

Variance ratio tests are not usually used as unit root tests, and are instead used for testing whether a financial return series is a pure random walk versus having some predictability. This example uses the excess return on the market from Ken French’s data.

[19]: `import numpy as np`
`import pandas as pd`
`import arch.data.frenchdata`
`ff = arch.data.frenchdata.load()`
`excess_market = ff.loc[:, 0]` # Excess Market
`print(ff.describe())`

<table>
<thead>
<tr>
<th></th>
<th>Mkt-RF</th>
<th>SMB</th>
<th>HML</th>
<th>RF</th>
</tr>
</thead>
<tbody>
<tr>
<td>count</td>
<td>1109.000000</td>
<td>1109.000000</td>
<td>1109.000000</td>
<td>1109.000000</td>
</tr>
<tr>
<td>mean</td>
<td>0.659946</td>
<td>0.206555</td>
<td>0.368864</td>
<td>0.274220</td>
</tr>
<tr>
<td>std</td>
<td>5.327524</td>
<td>3.191132</td>
<td>3.482352</td>
<td>0.253377</td>
</tr>
<tr>
<td>min</td>
<td>-29.130000</td>
<td>-16.870000</td>
<td>-13.280000</td>
<td>-0.060000</td>
</tr>
<tr>
<td>25%</td>
<td>-1.970000</td>
<td>-1.560000</td>
<td>-1.320000</td>
<td>0.030000</td>
</tr>
<tr>
<td>50%</td>
<td>1.020000</td>
<td>0.070000</td>
<td>0.140000</td>
<td>0.230000</td>
</tr>
</tbody>
</table>

(continues on next page)
The variance ratio compares the variance of a 1-period return to that of a multi-period return. The comparison length has to be set when initializing the test.

This example compares 1-month to 12-month returns, and the null that the series is a pure random walk is rejected. Negative values indicate some positive autocorrelation in the returns (momentum).

```
[20]: from arch.unitroot import VarianceRatio
    vr = VarianceRatio(excess_market, 12)
    print(vr.summary().as_text())
```

```
Variance-Ratio Test Results
=====================================  
Test Statistic               -5.029
P-value                      0.000
Lags                         12
-------------------------------------
Computed with overlapping blocks (de-biased)
```

By default the VR test uses all overlapping blocks to estimate the variance of the long period’s return. This can be changed by setting overlap=False. This lowers the power but does not change the conclusion.

```
[21]: warnings.simplefilter('always') # Restore warnings
    vr.overlap = False
    print(vr.summary().as_text())
```

```
Variance-Ratio Test Results
=====================================  
Test Statistic               -6.206
P-value                      0.000
Lags                         12
-------------------------------------
Computed with non-overlapping blocks
```

```
c:\git\arch\arch\unitroot\unitroot.py:1533: InvalidLengthWarning: The length of y is not an exact multiple of 12, and so the final 4 observations have been dropped.
InvalidLengthWarning,
```

Note: The warning is intentional. It appears here since when it is not possible to use all data since the data length is not an integer multiple of the long period when using non-overlapping blocks. There is little reason to use overlap=False.

4.3 The Unit Root Tests

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADF(y[, lags, trend, max_lags, method, ...])</td>
<td>Augmented Dickey-Fuller unit root test</td>
</tr>
<tr>
<td>DFGLS(y[, lags, trend, max_lags, method, ...])</td>
<td>Elliott, Rothenberg and Stock’s GLS version of the Dickey-Fuller test</td>
</tr>
</tbody>
</table>

Continued on next page
4.3.1 arch.unitroot.ADF

class arch.unitroot.ADF(y, lags=None, trend='c', max_lags=None, method='AIC', low_memory=None)

Augmented Dickey-Fuller unit root test

Parameters

y [(ndarray, Series)] The data to test for a unit root

lags [int, optional] The number of lags to use in the ADF regression. If omitted or None, method is used to automatically select the lag length with no more than max_lags are included.

trend [{'nc', 'c', 'ct', 'ctt'}, optional] The trend component to include in the ADF test ‘nc’ - No trend components ‘c’ - Include a constant (Default) ‘ct’ - Include a constant and linear time trend ‘ctt’ - Include a constant and linear and quadratic time trends

max_lags [int, optional] The maximum number of lags to use when selecting lag length

method [{'AIC', 'BIC', 't-stat'}, optional] The method to use when selecting the lag length ‘AIC’ - Select the minimum of the Akaike IC ‘BIC’ - Select the minimum of the Schwarz/Bayesian IC ‘t-stat’ - Select the minimum of the Schwarz/Bayesian IC

low_memory [bool] Flag indicating whether to use a low memory implementation of the lag selection algorithm. The low memory algorithm is slower than the standard algorithm but will use 2-4% of the memory required for the standard algorithm. This options allows automatic lag selection to be used in very long time series. If None, use automatic selection of algorithm.

Notes

The null hypothesis of the Augmented Dickey-Fuller is that there is a unit root, with the alternative that there is no unit root. If the pvalue is above a critical size, then the null cannot be rejected that there and the series appears to be a unit root.

The p-values are obtained through regression surface approximation from MacKinnon (1994) using the updated 2010 tables. If the p-value is close to significant, then the critical values should be used to judge whether to reject the null.

The autolag option and maxlag for it are described in Greene.

References

Examples

```python
>>> from arch.unitroot import ADF
>>> import numpy as np
>>> import statsmodels.api as sm
>>> data = sm.datasets.macrodata.load().data
```
```python
>>> inflation = np.diff(np.log(data['cpi']))
>>> adf = ADF(inflation)
>>> print('{0:0.4f}'.format(adf.stat))
-3.0931
>>> print('{0:0.4f}'.format(adf.pvalue))
0.0271
>>> adf.lags
2
>>> adf.trend='ct'
>>> print('{0:0.4f}'.format(adf.stat))
-3.2111
>>> print('{0:0.4f}'.format(adf.pvalue))
0.0822
```

Methods

`summary(self)`

Summary of test, containing statistic, p-value and critical values

arch.unitroot.ADF.summary

ADF. `summary` (self) → statsmodels.iolib.summary.Summary

Summary of test, containing statistic, p-value and critical values

Return type Summary

Properties

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>alternative_hypothesis</td>
<td>The alternative hypothesis</td>
</tr>
<tr>
<td>critical_values</td>
<td>Dictionary containing critical values specific to the test, number of observations and included deterministic trend terms.</td>
</tr>
<tr>
<td>lags</td>
<td>Sets or gets the number of lags used in the model.</td>
</tr>
<tr>
<td>max_lags</td>
<td>Sets or gets the maximum lags used when automatically selecting lag length.</td>
</tr>
<tr>
<td>nobs</td>
<td>The number of observations used when computing the test statistic.</td>
</tr>
<tr>
<td>null_hypothesis</td>
<td>The null hypothesis</td>
</tr>
<tr>
<td>pvalue</td>
<td>Returns the p-value for the test statistic</td>
</tr>
<tr>
<td>regression</td>
<td>Returns the OLS regression results from the ADF model estimated</td>
</tr>
<tr>
<td>stat</td>
<td>The test statistic for a unit root</td>
</tr>
<tr>
<td>trend</td>
<td>Sets or gets the deterministic trend term used in the test.</td>
</tr>
<tr>
<td>valid_trends</td>
<td>List of valid trend terms.</td>
</tr>
<tr>
<td>y</td>
<td>Returns the data used in the test statistic</td>
</tr>
</tbody>
</table>
arch.unitroot.ADF.alternative_hypothesis

ADF.alternative_hypothesis
The alternative hypothesis

Return type str

arch.unitroot.ADF.critical_values

ADF.critical_values
Dictionary containing critical values specific to the test, number of observations and included deterministic trend terms.

Return type Dict[str, float]

arch.unitroot.ADF.lags

ADF.lags
Sets or gets the number of lags used in the model. When bootstrap use DF-type regressions, lags is the number of lags in the regression model. When bootstrap use long-run variance estimators, lags is the number of lags used in the long-run variance estimator.

Return type int

arch.unitroot.ADF.max_lags

ADF.max_lags
Sets or gets the maximum lags used when automatically selecting lag length

Return type Optional[int]

arch.unitroot.ADF.nobs

ADF.nobs
The number of observations used when computing the test statistic. Accounts for loss of data due to lags for regression-based bootstrap.

Return type int

arch.unitroot.ADF.null_hypothesis

ADF.null_hypothesis
The null hypothesis

Return type str

arch.unitroot.ADF.pvalue

ADF.pvalue
Returns the p-value for the test statistic

Return type float
arch.unitroot.ADF.regression

ADF.regression

Returns the OLS regression results from the ADF model estimated

Return type RegressionResults

arch.unitroot.ADF.stat

ADF.stat

The test statistic for a unit root

Return type float

arch.unitroot.ADF.trend

ADF.trend

Sets or gets the deterministic trend term used in the test. See valid_trends for a list of supported trends

Return type str

arch.unitroot.ADF.valid_trends

ADF.valid_trends

List of valid trend terms.

Return type Sequence[str]

arch.unitroot.ADF.y

ADF.y

Returns the data used in the test statistic

Return type Union[ndarray, DataFrame, Series]

4.3.2 arch.unitroot.DFGLS

class arch.unitroot.DFGLS(y, lags=None, trend='c', max_lags=None, method='AIC', low_memory=None)

Elliott, Rothenberg and Stock’s GLS version of the Dickey-Fuller test

Parameters

y [[ndarray, Series]] The data to test for a unit root

lags [int, optional] The number of lags to use in the ADF regression. If omitted or None, method is used to automatically select the lag length with no more than max_lags are included.

trend [{‘c’, ‘ct’}, optional] The trend component to include in the ADF test ‘c’ - Include a constant (Default) ‘ct’ - Include a constant and linear time trend

max_lags [int, optional] The maximum number of lags to use when selecting lag length

method [{‘AIC’, ‘BIC’, ‘t-stat’}, optional] The method to use when selecting the lag length ‘AIC’ - Select the minimum of the Akaike IC ‘BIC’ - Select the minimum of the Schwarz/Bayesian IC ‘t-stat’ - Select the minimum of the Schwarz/Bayesian IC
Notes

The null hypothesis of the Dickey-Fuller GLS is that there is a unit root, with the alternative that there is no unit root. If the p-value is above a critical size, then the null cannot be rejected and the series appears to be a unit root.

DFGLS differs from the ADF test in that an initial GLS detrending step is used before a trend-less ADF regression is run.

Critical values and p-values when trend is ‘c’ are identical to the ADF. When trend is set to ‘ct’, they are from ...

References

Examples

```python
>>> from arch.unitroot import DFGLS
>>> import numpy as np
>>> import statsmodels.api as sm

>>> data = sm.datasets.macrodata.load().data
>>> inflation = np.diff(np.log(data['cpi']))
>>> dfgls = DFGLS(inflation)

>>> print('{0:0.4f}'.format(dfgls.stat))
-2.7611
>>> print('{0:0.4f}'.format(dfgls.pvalue))
0.0059

>>> dfgls.lags
2
>>> dfgls.trend = 'ct'
>>> print('{0:0.4f}'.format(dfgls.stat))
-2.9036
>>> print('{0:0.4f}'.format(dfgls.pvalue))
0.0447
```

Methods

<table>
<thead>
<tr>
<th><code>summary(self)</code></th>
<th>Summary of test, containing statistic, p-value and critical values</th>
</tr>
</thead>
</table>

`arch.unitroot.DFGLS.summary`

DFGLS. `summary (self)` → statsmodels.iolib.summary.Summary

Summary of test, containing statistic, p-value and critical values

<table>
<thead>
<tr>
<th>Return type</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Summary</code></td>
<td></td>
</tr>
</tbody>
</table>

Properties

<table>
<thead>
<tr>
<th><code>alternative_hypothesis</code></th>
<th>The alternative hypothesis</th>
</tr>
</thead>
</table>

Continued on next page
Table 5 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>critical_values</code></td>
<td>Dictionary containing critical values specific to the test, number of observations and included deterministic trend terms.</td>
</tr>
<tr>
<td><code>lags</code></td>
<td>Sets or gets the number of lags used in the model.</td>
</tr>
<tr>
<td><code>max_lags</code></td>
<td>Sets or gets the maximum lags used when automatically selecting lag length.</td>
</tr>
<tr>
<td><code>nobs</code></td>
<td>The number of observations used when computing the test statistic.</td>
</tr>
<tr>
<td><code>null_hypothesis</code></td>
<td>The null hypothesis</td>
</tr>
<tr>
<td><code>pvalue</code></td>
<td>Returns the p-value for the test statistic</td>
</tr>
<tr>
<td><code>regression</code></td>
<td>Returns the OLS regression results from the ADF model estimated</td>
</tr>
<tr>
<td><code>stat</code></td>
<td>The test statistic for a unit root</td>
</tr>
<tr>
<td><code>trend</code></td>
<td>Sets or gets the deterministic trend term used in the test.</td>
</tr>
<tr>
<td><code>valid_trends</code></td>
<td>List of valid trend terms.</td>
</tr>
<tr>
<td><code>y</code></td>
<td>Returns the data used in the test statistic</td>
</tr>
</tbody>
</table>

arch.unitroot.DFGLS.alternative_hypothesis

DFGLS.alternative_hypothesis
The alternative hypothesis

Return type: str

arch.unitroot.DFGLS.critical_values

DFGLS.critical_values
Dictionary containing critical values specific to the test, number of observations and included deterministic trend terms.

Return type: Dict[str, float]

arch.unitroot.DFGLS.lags

DFGLS.lags
Sets or gets the number of lags used in the model. When bootstrap use DF-type regressions, lags is the number of lags in the regression model. When bootstrap use long-run variance estimators, lags is the number of lags used in the long-run variance estimator.

Return type: int

arch.unitroot.DFGLS.max_lags

DFGLS.max_lags
Sets or gets the maximum lags used when automatically selecting lag length

Return type: Optional[int]
arch.unitroot.DFGLS.nobs

DFGLS.nobs
The number of observations used when computing the test statistic. Accounts for loss of data due to lags for regression-based bootstrap.

Return type int

arch.unitroot.DFGLS.null_hypothesis

DFGLS.null_hypothesis
The null hypothesis

Return type str

arch.unitroot.DFGLS.pvalue

DFGLS.pvalue
Returns the p-value for the test statistic

Return type float

arch.unitroot.DFGLS.regression

DFGLS.regression
Returns the OLS regression results from the ADF model estimated

Return type RegressionResults

arch.unitroot.DFGLS.stat

DFGLS.stat
The test statistic for a unit root

Return type float

arch.unitroot.DFGLS.trend

DFGLS.trend
Sets or gets the deterministic trend term used in the test. See valid_trends for a list of supported trends

arch.unitroot.DFGLS.valid_trends

DFGLS.valid_trends
List of valid trend terms.

Return type Sequence[str]
arch.unitroot.DFGLS.y

DFGLS.y
Returns the data used in the test statistic

Return type Union[ndarray, DataFrame, Series]

4.3.3 arch.unitroot.PhillipsPerron

class arch.unitroot.PhillipsPerron(y, lags=None, trend='c', test_type='tau')
Phillips-Perron unit root test

Parameters

y [[ndarray, Series]] The data to test for a unit root

lags [int, optional] The number of lags to use in the Newey-West estimator of the long-run
covariance. If omitted or None, the lag length is set automatically to 12 * (nobs/100) **
(1/4)

trend [({'nc', 'c', 'ct'}, optional]

The trend component to include in the ADF test
‘nc’ - No trend components
‘c’ - Include a constant (Default)
‘ct’ - Include a constant and linear time trend

test_type [({'tau', 'rho'})] The test to use when computing the test statistic.
‘tau’ is based on the
t-stat and ‘rho’ uses a test based on nobs times the re-centered regression coefficient

Notes

The null hypothesis of the Phillips-Perron (PP) test is that there is a unit root, with the alternative that there is no
unit root. If the p-value is above a critical size, then the null cannot be rejected that there and the series appears
to be a unit root.

Unlike the ADF test, the regression estimated includes only one lag of the dependant variable, in addition to
trend terms. Any serial correlation in the regression errors is accounted for using a long-run variance estimator
(currently Newey-West).

The p-values are obtained through regression surface approximation from MacKinnon (1994) using the updated
2010 tables. If the p-value is close to significant, then the critical values should be used to judge whether to
reject the null.

References

Examples

```python
>>> from arch.unitroot import PhillipsPerron
>>> import numpy as np
>>> import statsmodels.api as sm
>>> data = sm.datasets.macrodata.load().data
>>> inflation = np.diff(np.log(data['cpi']))
>>> pp = PhillipsPerron(inflation)
>>> print('{0:0.4f}'.format(pp.stat))
-8.1356
>>> print('{0:0.4f}'.format(pp.pvalue))
0.0000
```
>>> pp.lags
15
>>> pp.trend = 'ct'
>>> print('{0:0.4f}'.format(pp.stat))
-8.2022
>>> print('{0:0.4f}'.format(pp.pvalue))
0.0000
>>> pp.test_type = 'rho'
>>> print('{0:0.4f}'.format(pp.stat))
-120.3271
>>> print('{0:0.4f}'.format(pp.pvalue))
0.0000

Methods

summary(self) Summary of test, containing statistic, p-value and critical values

arch.unitroot.PhillipsPerron.summary

PhillipsPerron.summary(self) → statsmodels.iolib.summary.Summary
Summary of test, containing statistic, p-value and critical values
Return type Summary

Properties

alternative_hypothesis The alternative hypothesis
critical_values Dictionary containing critical values specific to the test, number of observations and included deterministic trend terms.
lags Sets or gets the number of lags used in the model.
nobs The number of observations used when computing the test statistic.
null_hypothesis The null hypothesis
pvalue Returns the p-value for the test statistic
stat The test statistic for a unit root
test_type Gets or sets the test type returned by stat.
trend Sets or gets the deterministic trend term used in the test.
valid_trends List of valid trend terms.
y Returns the data used in the test statistic

arch.unitroot.PhillipsPerron.alternative_hypothesis

PhillipsPerron.alternative_hypothesis
The alternative hypothesis
Return type str
arch.unitroot.PhilipsPerron.critical_values

PhillipsPerron.critical_values
Dictionary containing critical values specific to the test, number of observations and included deterministic
trend terms.

 Return type Dict[str, float]

arch.unitroot.PhilipsPerron.lags

PhillipsPerron.lags
Sets or gets the number of lags used in the model. When bootstrap use DF-type regressions, lags is the
number of lags in the regression model. When bootstrap use long-run variance estimators, lags is the
number of lags used in the long-run variance estimator.

 Return type int

arch.unitroot.PhilipsPerron.nobs

PhillipsPerron.nobs
The number of observations used when computing the test statistic. Accounts for loss of data due to lags
for regression-based bootstrap.

 Return type int

arch.unitroot.PhilipsPerron.null_hypothesis

PhillipsPerron.null_hypothesis
The null hypothesis

 Return type str

arch.unitroot.PhilipsPerron.pvalue

PhillipsPerron.pvalue
Returns the p-value for the test statistic

 Return type float

arch.unitroot.PhilipsPerron.stat

PhillipsPerron.stat
The test statistic for a unit root

 Return type float

arch.unitroot.PhilipsPerron.test_type

PhillipsPerron.test_type
Gets or sets the test type returned by stat. Valid values are ‘tau’ or ‘rho’

 Return type str
arch.unitroot.PhillipsPerron.trend

PhillipsPerron.trend
Sets or gets the deterministic trend term used in the test. See valid_trends for a list of supported trends

Return type `str`

arch.unitroot.PhillipsPerron.valid_trends

PhillipsPerron.valid_trends
List of valid trend terms.

Return type `Sequence[Union[str]]`

arch.unitroot.PhillipsPerron.y

PhillipsPerron.y
Returns the data used in the test statistic

Return type `Union[ndarray, DataFrame, Series]`

4.3.4 arch.unitroot.ZivotAndrews

class arch.unitroot.ZivotAndrews(y, lags=None, trend='c', trim=0.15, max_lags=None, method='AIC')

Zivot-Andrews structural-break unit-root test
The Zivot-Andrews test can be used to test for a unit root in a univariate process in the presence of serial correlation and a single structural break.

Parameters

- **y** [array_like] data series
- **lags** [int, optional] The number of lags to use in the ADF regression. If omitted or None, method is used to automatically select the lag length with no more than max_lags are included.
- **trend** [{‘nc’, ‘c’, ‘ct’, ‘ctt’}, optional] The trend component to include in the Zivot-Andrews test ‘c’ - Include a constant (Default) ‘t’ - Include a linear time trend ‘ct’ - Include a constant and linear time trend
- **trim** [float] percentage of series at begin/end to exclude from break-period calculation in range [0, 0.333] (default=0.15)
- **max_lags** [int, optional] The maximum number of lags to use when selecting lag length
- **method** [{‘AIC’, ‘BIC’, ‘t-stat’}, optional] The method to use when selecting the lag length ‘AIC’ - Select the minimum of the Akaike IC ‘BIC’ - Select the minimum of the Schwarz/Bayesian IC ‘t-stat’ - Select the minimum of the Schwarz/Bayesian IC

Notes

H0 = unit root with a single structural break

Algorithm follows Baum (2004/2015) approximation to original Zivot-Andrews method. Rather than performing an autolag regression at each candidate break period (as per the original paper), a single autolag regression is run up-front on the base model (constant + trend with no dummies) to determine the best lag length. This lag
length is then used for all subsequent break-period regressions. This results in significant run time reduction but also slightly more pessimistic test statistics than the original Zivot-Andrews method.

No attempt has been made to characterize the size/power trade-off.

References

Methods

```python
summary(self) Summary of test, containing statistic, p-value and critical values
```

arch.unitroot.ZivotAndrews.summary

`ZivotAndrews.summary(self) → statsmodels.iolib.summary.Summary`

Summary of test, containing statistic, p-value and critical values

Return type `Summary`

Properties

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>alternative_hypothesis</code></td>
<td>The alternative hypothesis</td>
</tr>
<tr>
<td><code>critical_values</code></td>
<td>Dictionary containing critical values specific to the test, number of observations and included deterministic trend terms.</td>
</tr>
<tr>
<td><code>lags</code></td>
<td>Sets or gets the number of lags used in the model.</td>
</tr>
<tr>
<td><code>nobs</code></td>
<td>The number of observations used when computing the test statistic.</td>
</tr>
<tr>
<td><code>null_hypothesis</code></td>
<td>The null hypothesis</td>
</tr>
<tr>
<td><code>pvalue</code></td>
<td>Returns the p-value for the test statistic</td>
</tr>
<tr>
<td><code>stat</code></td>
<td>The test statistic for a unit root</td>
</tr>
<tr>
<td><code>trend</code></td>
<td>Sets or gets the deterministic trend term used in the test.</td>
</tr>
<tr>
<td><code>valid_trends</code></td>
<td>List of valid trend terms.</td>
</tr>
<tr>
<td><code>y</code></td>
<td>Returns the data used in the test statistic</td>
</tr>
</tbody>
</table>

arch.unitroot.ZivotAndrews.alternative_hypothesis

`ZivotAndrews.alternative_hypothesis`

The alternative hypothesis

Return type `str`

arch.unitroot.ZivotAndrews.critical_values

`ZivotAndrews.critical_values`

Dictionary containing critical values specific to the test, number of observations and included deterministic trend terms.

Return type `Dict[str, float]`
arch.unitroot.ZivotAndrews.lags

ZivotAndrews.lags
Sets or gets the number of lags used in the model. When bootstrap use DF-type regressions, lags is the number of lags in the regression model. When bootstrap use long-run variance estimators, lags is the number of lags used in the long-run variance estimator.

Return type int

arch.unitroot.ZivotAndrews.nobs

ZivotAndrews.nobs
The number of observations used when computing the test statistic. Accounts for loss of data due to lags for regression-based bootstrap.

Return type int

arch.unitroot.ZivotAndrews.null_hypothesis

ZivotAndrews.null_hypothesis
The null hypothesis

Return type str

arch.unitroot.ZivotAndrews.pvalue

ZivotAndrews.pvalue
Returns the p-value for the test statistic

Return type float

arch.unitroot.ZivotAndrews.stat

ZivotAndrews.stat
The test statistic for a unit root

Return type float

arch.unitroot.ZivotAndrews.trend

ZivotAndrews.trend
Sets or gets the deterministic trend term used in the test. See valid_trends for a list of supported trends

Return type str

arch.unitroot.ZivotAndrews.valid_trends

ZivotAndrews.valid_trends
List of valid trend terms.

Return type Sequence[str]
arch.unitroot.ZivotAndrews.y

ZivotAndrews.y
Returns the data used in the test statistic

Return type Union[ndarray, DataFrame, Series]

4.3.5 arch.unitroot.VarianceRatio

class arch.unitroot.VarianceRatio(y, lags=2, trend='c', debiased=True, robust=True, overlap=True)

Variance Ratio test of a random walk.

Parameters

y [[ndarray, Series]] The data to test for a random walk

lags [int] The number of periods to used in the multi-period variance, which is the numerator of the test statistic. Must be at least 2

trend [['nc', 'c'], optional] 'c' allows for a non-zero drift in the random walk, while 'nc' requires that the increments to y are mean 0

overlap [bool, optional] Indicates whether to use all overlapping blocks. Default is True. If False, the number of observations in y minus 1 must be an exact multiple of lags. If this condition is not satisfied, some values at the end of y will be discarded.

robust [bool, optional] Indicates whether to use heteroskedasticity robust inference. Default is True.

debiased [bool, optional] Indicates whether to use a debiased version of the test. Default is True. Only applicable if overlap is True.

Notes

The null hypothesis of a VR is that the process is a random walk, possibly plus drift. Rejection of the null with a positive test statistic indicates the presence of positive serial correlation in the time series.

References

Examples

```python
>>> from arch.unitroot import VarianceRatio
>>> import datetime as dt
>>> import pandas_datareader as pdr

>>> data = pdr.get_data_fred('DJIA')
>>> data = data.resample('M').last()  # End of month
>>> returns = data['DJIA'].pct_change().dropna()
>>> vr = VarianceRatio(returns, lags=12)
>>> print('{0:0.4f}'.format(vr.pvalue))
0.0000
```

Methods

4.3. The Unit Root Tests 287
Summary

`summary(self)`
Summary of test, containing statistic, p-value and critical values

arch.unitroot.VarianceRatio.summary

`VarianceRatio.summary(self) → statsmodels.iolib.summary.Summary`
Summary of test, containing statistic, p-value and critical values
Return type Summary

Properties

- **alternative_hypothesis**
The alternative hypothesis
Return type str

- **critical_values**
Dictionary containing critical values specific to the test, number of observations and included deterministic trend terms.
Return type Dict[str, float]

- **debiased**
Sets of gets the indicator to use debiased variances in the ratio

- **lags**
Sets or gets the number of lags used in the model.

- **nobs**
The number of observations used when computing the test statistic.

- **null_hypothesis**
The null hypothesis

- **overlap**
Sets of gets the indicator to use overlapping returns in the long-period variance estimator

- **pvalue**
Returns the p-value for the test statistic

- **robust**
Sets of gets the indicator to use a heteroskedasticity robust variance estimator

- **stat**
The test statistic for a unit root

- **trend**
Sets or gets the deterministic trend term used in the test.

- **valid_trends**
List of valid trend terms.

- **vr**
The ratio of the long block lags-period variance to the 1-period variance

- **y**
Returns the data used in the test statistic
arch.unitroot.VarianceRatio.debiased

VarianceRatio.debiased
Sets of gets the indicator to use debiased variances in the ratio

 Return type bool

arch.unitroot.VarianceRatio.lags

VarianceRatio.lags
Sets or gets the number of lags used in the model. When bootstrap use DF-type regressions, lags is the number of lags in the regression model. When bootstrap use long-run variance estimators, lags is the number of lags used in the long-run variance estimator.

 Return type int

arch.unitroot.VarianceRatio.nobs

VarianceRatio.nobs
The number of observations used when computing the test statistic. Accounts for loss of data due to lags for regression-based bootstrap.

 Return type int

arch.unitroot.VarianceRatio.null_hypothesis

VarianceRatio.null_hypothesis
The null hypothesis

 Return type str

arch.unitroot.VarianceRatio.overlap

VarianceRatio.overlap
Sets of gets the indicator to use overlapping returns in the long-period variance estimator

 Return type bool

arch.unitroot.VarianceRatio.pvalue

VarianceRatio.pvalue
Returns the p-value for the test statistic

 Return type float

arch.unitroot.VarianceRatio.robust

VarianceRatio.robust
Sets of gets the indicator to use a heteroskedasticity robust variance estimator

 Return type bool
arch Documentation, Release 4.13+2.gccbb460e

arch.unitroot.VarianceRatio.stat

VarianceRatio.stat

The test statistic for a unit root

Return type float

arch.unitroot.VarianceRatio.trend

VarianceRatio.trend

Sets or gets the deterministic trend term used in the test. See valid_trends for a list of supported trends

Return type str

arch.unitroot.VarianceRatio.valid_trends

VarianceRatio.valid_trends

List of valid trend terms.

Return type Sequence[str]

arch.unitroot.VarianceRatio.vr

VarianceRatio.vr

The ratio of the long block lags-period variance to the 1-period variance

Return type float

arch.unitroot.VarianceRatio.y

VarianceRatio.y

Returns the data used in the test statistic

Return type Union[ndarray, DataFrame, Series]

4.3.6 arch.unitroot.KPSS

class arch.unitroot.KPSS (y, lags=None, trend='c')

Kwiatkowski, Phillips, Schmidt and Shin (KPSS) stationarity test

Parameters

- **y** [[ndarray, Series]] The data to test for stationarity
- **lags** [int, optional] The number of lags to use in the Newey-West estimator of the long-run covariance. If omitted or None, the number of lags is calculated with the data-dependent method of Hobijn et al. (1998). See also Andrews (1991), Newey & West (1994), and Schwert (1989). Set lags=-1 to use the old method that only depends on the sample size, 12 * (nobs/100) ** (1/4).
- **trend** [['c', 'ct'], optional]

 The trend component to include in the ADF test
 - ‘c’ - Include a constant (Default) ‘ct’ - Include a constant and linear time trend

290 Chapter 4. Unit Root Testing
Notes

The null hypothesis of the KPSS test is that the series is weakly stationary and the alternative is that it is non-stationary. If the p-value is above a critical size, then the null cannot be rejected that there and the series appears stationary.

The p-values and critical values were computed using an extensive simulation based on 100,000,000 replications using series with 2,000 observations.

References

Examples

```python
>>> from arch.unitroot import KPSS
>>> import numpy as np
>>> import statsmodels.api as sm

>>> data = sm.datasets.macrodata.load().data
>>> inflation = np.diff(np.log(data['cpi']))
>>> kpss = KPSS(inflation)
>>> print('{0:0.4f}'.format(kpss.stat))
0.2870
>>> print('{0:0.4f}'.format(kpss.pvalue))
0.1473
>>> kpss.trend = 'ct'
>>> print('{0:0.4f}'.format(kpss.stat))
0.2075
>>> print('{0:0.4f}'.format(kpss.pvalue))
0.0128
```

Methods

```python
arch.unitroot.KPSS.summary

KPSS.summary(self) → statsmodels.iolib.summary.Summary
Summary of test, containing statistic, p-value and critical values

Return type Summary
```

Properties

```python
alternative_hypothesis

The alternative hypothesis

critical_values

Dictionary containing critical values specific to the test, number of observations and included deterministic trend terms.

lags

Sets or gets the number of lags used in the model.

nobs

The number of observations used when computing the test statistic.
```

Continued on next page
Table 13 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>null_hypothesis</td>
<td>The null hypothesis</td>
</tr>
<tr>
<td>pvalue</td>
<td>Returns the p-value for the test statistic</td>
</tr>
<tr>
<td>stat</td>
<td>The test statistic for a unit root</td>
</tr>
<tr>
<td>trend</td>
<td>Sets or gets the deterministic trend term used in the test.</td>
</tr>
<tr>
<td>valid_trends</td>
<td>List of valid trend terms.</td>
</tr>
<tr>
<td>y</td>
<td>Returns the data used in the test statistic</td>
</tr>
</tbody>
</table>

arch.unitroot.KPSS.alternative_hypothesis

KPSS.alternative_hypothesis

The alternative hypothesis

Return type: str

arch.unitroot.KPSS.critical_values

KPSS.critical_values

Dictionary containing critical values specific to the test, number of observations and included deterministic trend terms.

Return type: Dict[str, float]

arch.unitroot.KPSS.lags

KPSS.lags

Sets or gets the number of lags used in the model. When bootstrap use DF-type regressions, lags is the number of lags in the regression model. When bootstrap use long-run variance estimators, lags is the number of lags used in the long-run variance estimator.

Return type: int

arch.unitroot.KPSS.nobs

KPSS.nobs

The number of observations used when computing the test statistic. Accounts for loss of data due to lags for regression-based bootstrap.

Return type: int

arch.unitroot.KPSS.null_hypothesis

KPSS.null_hypothesis

The null hypothesis

Return type: str

arch.unitroot.KPSS.pvalue

KPSS.pvalue

Returns the p-value for the test statistic
4.3.7 Automatic Bandwidth Selection

```
auto_bandwidth(y, int[], numpy.ndarray, ...) → float
```


Parameters

- `y` [[ndarray, Series]] Data on which to apply the bandwidth selection
- `kernel` [str] The kernel function to use for selecting the bandwidth
 - ‘ba’, ‘bartlett’, ‘nw’: Bartlett kernel (default)
 - ‘pa’, ‘parzen’, ‘gallant’: Parzen kernel
 - ‘qs’, ‘andrews’: Quadratic Spectral kernel

Returns
float The estimated optimal bandwidth.

Return type float
5.1 Version 4

5.1.1 Since 4.12

- Issue warnings when unit root tests are mutated. Will raise after 5.0 is released.

5.1.2 Release 4.12

- Added typing support to all classes, functions and methods (GH338, GH341, GH342, GH343, GH345, GH346).
- Fixed an issue that caused tests to fail on SciPy 1.4+ (GH339).
- Dropped support for Python 3.5 inline with NEP 29 (GH334).
- Added methods to compute moment and lower partial moments for standardized residuals. See, for example, `moment()` and `partial_moment()` (GH329).
- Fixed a bug that produced an OverflowError when a time series has no variance (GH331).

5.1.3 Release 4.11

- Added `std_resid()` (GH326).
- Error if inputs are not ndarrays, DataFrames or Series (GH315).
- Added a check that the covariance is non-zero when using “studentized” confidence intervals. If the function bootstrapped produces statistics with 0 variance, it is not possible to studentized (GH322).

5.1.4 Release 4.10

- Fixed a bug in arch_lm_test that assumed that the model data is contained in a pandas Series. (GH313).
• Fixed a bug that can affect use in certain environments that reload modules (GH317).

5.1.5 Release 4.9

• Removed support for Python 2.7.
• Added `auto_bandwidth()` to compute optimized bandwidth for a number of common kernel covariance estimators (GH303). This code was written by Michael Rabba.
• Added a parameter `rescale` to `arch_model()` that allows the estimator to rescale data if it may help parameter estimation. If `rescale=True`, then the data will be rescaled by a power of 10 (e.g., 10, 100, or 1000) to produce a series with a residual variance between 1 and 1000. The model is then estimated on the rescaled data. The scale is reported `scale()`. If `rescale=None`, a warning is produced if the data appear to be poorly scaled, but no change of scale is applied. If `rescale=False`, no scale change is applied and no warning is issued.
• Fixed a bug when using the BCA bootstrap method where the leave-one-out jackknife used the wrong centering variable (GH288).
• Added `optimization_result()` to simplify checking for convergence of the numerical optimizer (GH292).
• Added `random_state` argument to `forecast()` to allow a `RandomState` object to be passed in when forecasting when `method='bootstrap'`. This allows the repeatable forecast to be produced (GH290).
• Fixed a bug in `VarianceRatio` that used the wrong variance in nonrobust inference with overlapping samples (GH286).

5.1.6 Release 4.8.1

• Fixed a bug which prevented extension modules from being correctly imported.

5.1.7 Release 4.8

• Added Zivot-Andrews unit root test `ZivotAndrews`. This code was originally written by Jim Varanelli.
• Added data dependent lag length selection to the KPSS test, `KPSS`. This code was originally written by Jim Varanelli.
• Added `IndependentSamplesBootstrap` to perform bootstrap inference on statistics from independent samples that may have uneven length (GH260).
• Added `arch_lm_test()` to perform ARCH-LM tests on model residuals or standardized residuals (GH261).
• Fixed a bug in `ADF` when applying to very short time series (GH262).
• Added ability to set the `random_state` when initializing a bootstrap (GH259).

5.1.8 Release 4.7

• Added support for Fractionally Integrated GARCH (FIGARCH) in `FIGARCH`.
• Enable user to specify a specific value of the `backcast` in place of the automatically generated value.
• Fixed a big where parameter-less models where incorrectly reported as having constant variance (GH248).
5.1.9 Release 4.6

- Added support for MIDAS volatility processes using Hyperbolic weighting in `MidasHyperbolic (GH233).

5.1.10 Release 4.5

- Added a parameter to forecast that allows a user-provided callable random generator to be used in place of the model random generator (GH225).
- Added a low memory automatic lag selection method that can be used with very large time-series.
- Improved performance of automatic lag selection in ADF and related tests.

5.1.11 Release 4.4

- Added named parameters to Dickey-Fuller regressions.
- Removed use of the module-level NumPy RandomState. All random number generators use separate RandomState instances.
- Fixed a bug that prevented 1-step forecasts with exogenous regressors.
- Added the Generalized Error Distribution for univariate ARCH models.
- Fixed a bug in MCS when using the max method that prevented all included models from being listed.

5.1.12 Release 4.3

- Added `FixedVariance` volatility process which allows pre-specified variances to be used with a mean model. This has been added to allow so-called zig-zag estimation where a mean model is estimated with a fixed variance, and then a variance model is estimated on the residuals using a ZeroMean variance process.

5.1.13 Release 4.2

- Fixed a bug that prevented `fix` from being used with a new model (GH156).
- Added `first_obs` and `last_obs` parameters to `fix` to mimic `fit`.
- Added ability to jointly estimate smoothing parameter in EWMA variance when fitting the model.
- Added ability to pass optimization options to ARCH model estimation (GH195).

5.2 Version 3

- Added forecast code for mean forecasting
- Added volatility hedgehog plot
- Added `fix` to arch models which allows for user specified parameters instead of estimated parameters.
- Added Hansen’s Skew T distribution to distribution (Stanislav Khrapov)
- Updated IPython notebooks to latest IPython version
- Bug and typo fixes to IPython notebooks
• Changed MCS to give a p-value of 1.0 to best model. Previously was NaN
• Removed hold_back and last_obs from model initialization and to fit method to simplify estimating a model over alternative samples (e.g., rolling window estimation)
• Redefined hold_back to only accept integers so that it is simply defined the number of observations held back. This number is now held out of the sample irrespective of the value of first_obs.

5.3 Version 2

5.3.1 Version 2.2

• Added multiple comparison procedures
• Typographical and other small changes

5.3.2 Version 2.1

• Add unit root tests: * Augmented Dickey-Fuller * Dickey-Fuller GLS * Phillips-Perron * KPSS * Variance Ratio
• Removed deprecated locations for ARCH modeling functions

5.4 Version 1

5.4.1 Version 1.1

• Refactored to move the univariate routines to arch.univariate and added deprecation warnings in the old locations
• Enable numba jit compilation in the python recursions
• Added a bootstrap framework, which will be used in future versions. The bootstrap framework is general purpose and can be used via high-level functions such as conf_int or cov, or as a low level iterator using bootstrap
This package should be cited using Zenodo. For example, for the 4.8.1 release,
CHAPTER 7

Index

• genindex
• modindex
Bibliography

Python Module Index

a

arch.bootstrap, 187
arch.bootstrap.multiple_comparison, 254
arch.unitroot, 273
arch.utility.testing, 186
INDEX

A
ADF (class in arch.unitroot), 274
aic (arch.univariate.base.ARCHModelFixedResult attribute), 184
aic (arch.univariate.base.ARCHModelResult attribute), 178
alternative_hypothesis (arch.unitroot.ADF attribute), 276
alternative_hypothesis (arch.unitroot.DFGLS attribute), 279
alternative_hypothesis (arch.unitroot.KPSS attribute), 292
alternative_hypothesis (arch.unitroot.PhilipsPerron attribute), 282
alternative_hypothesis (arch.unitroot.VarianceRatio attribute), 288
alternative_hypothesis (arch.unitroot.ZivotAndrews attribute), 285
apply() (arch.bootstrap.CircularBlockBootstrap method), 230
apply() (arch.bootstrap.IIDBootstrap method), 204
apply() (arch.bootstrap.IndependentSamplesBootstrap method), 213
apply() (arch.bootstrap.MovingBlockBootstrap method), 239
ARCH (class in arch.univariate), 116
arch.bootstrap (module), 187
arch.bootstrap.multiple_comparison (module), 254
arch.unitroot (module), 273
arch.utility.testing (module), 186
arch_lm_test() (arch.univariate.ARCHModelFixedResult method), 181
arch_lm_test() (arch.univariate.ARCHModelResult method), 173
arch_model() (in module arch), 5
ARCHModel (class in arch.univariate.base), 77
ARCHModelFixedResult (class in arch.univariate.base), 180
ARCHModelForecast (class in arch.univariate.base), 21
ARCHModelForecastSimulation (class in arch.univariate.base), 22
ARCHModelResult (class in arch.univariate.base), 173
ARX (class in arch.univariate), 53
auto_bandwidth() (in module arch.unitroot), 293

B
backcast() (arch.univariate.ARCH method), 117
backcast() (arch.univariate.ConstantVariance method), 84
backcast() (arch.univariate.EGARCH method), 101
backcast() (arch.univariate.EWMAVariance method), 123
backcast() (arch.univariate.FIGARCH method), 95
backcast() (arch.univariate.FixedVariance method), 134
backcast() (arch.univariate.GARCH method), 89
backcast() (arch.univariate.HARCH method), 106
backcast() (arch.univariate.MIDASHyperbolic method), 112
backcast() (arch.univariate.RiskMetrics2006 method), 128
backcast() (arch.univariate.volatility.VolatilityProcess method), 139
backcast_transform() (arch.univariate.ARCH method), 118
backcast_transform() (arch.univariate.ConstantVariance method), 84
backcast_transform() (arch.univariate.EGARCH method), 101
backcast_transform() (arch.univariate.EWMAVariance method), 123
backcast_transform() (arch.univariate.FIGARCH method), 95
backcast_transform() (arch.univariate.FixedVariance method), 134
backcast_transform() (arch.univariate.GARCH method), 90
backcast_transform() (arch.univariate.HARCH method), 107
backcast_transform() (arch.univariate.MIDASHyperbolic method), 112
backcast_transform() (arch.univariate.RiskMetrics2006 method), 129

better_models() (arch.bootstrap.SPA method), 255
bic (arch.univariate.base.ARCHModelFixedResult attribute), 185
bic (arch.univariate.base.ARCHModelResult attribute), 178
bootstrap() (arch.bootstrap.CircularBlockBootstrap method), 231
bootstrap() (arch.bootstrap.IIDBootstrap method), 205
bootstrap() (arch.bootstrap.IndependentSamplesBootstrap method), 213
bootstrap() (arch.bootstrap.MovingBlockBootstrap method), 240
bootstrap() (arch.bootstrap.StationaryBootstrap method), 223

bounds() (arch.univariate.ARCH method), 118
bounds() (arch.univariate.ARX method), 54
bounds() (arch.univariate.base.ARCHModel method), 77
bounds() (arch.univariate.ConstantMean method), 47
bounds() (arch.univariate.ConstantVariance method), 84
bounds() (arch.univariate.distribution.Distribution method), 168
bounds() (arch.univariate.EGARCH method), 101
bounds() (arch.univariate.EWMAVariance method), 123
bounds() (arch.univariate.FIGARCH method), 96
bounds() (arch.univariate.FixedVariance method), 134
bounds() (arch.univariate.GARCH method), 90
bounds() (arch.univariate.GeneralizedError method), 164
bounds() (arch.univariate.HARCH method), 107
bounds() (arch.univariate.HARX method), 62
bounds() (arch.univariate.LS method), 70
bounds() (arch.univariate.MIDASHyperbolic method), 112
bounds() (arch.univariate.Normal method), 150
bounds() (arch.univariate.RiskMetrics2006 method), 129
bounds() (arch.univariate.SkewStudent method), 159
bounds() (arch.univariate.StudentsT method), 154
bounds() (arch.univariate.volatility.VolatilityProcess method), 139
bounds() (arch.univariate.ZeroMean method), 40

cdf() (arch.univariate.distribution.Distribution method), 169
cdf() (arch.univariate.GeneralizedError method), 164
cdf() (arch.univariate.Normal method), 150
cdf() (arch.univariate.SkewStudent method), 159
cdf() (arch.univariate.StudentsT method), 154

CircularBlockBootstrap (class in arch.bootstrap), 229
clone() (arch.bootstrap.CircularBlockBootstrap method), 232
clone() (arch.bootstrap.IIDBootstrap method), 205
clone() (arch.bootstrap.IndependentSamplesBootstrap method), 214
clone() (arch.bootstrap.MovingBlockBootstrap method), 241
clone() (arch.bootstrap.StationaryBootstrap method), 223
compute() (arch.bootstrap.MCS method), 260
compute() (arch.bootstrap.SPA method), 256
compute() (arch.bootstrap.StepM method), 258
compute_param_cov() (arch.univariate.ARX method), 55
compute_param_cov() (arch.univariate.base.ARCHModel method), 77
compute_param_cov() (arch.univariate.ConstantMean method), 47
compute_param_cov() (arch.univariate.HARX method), 63
compute_param_cov() (arch.univariate.LS method), 70
compute_param_cov() (arch.univariate.ZeroMean method), 40
compute_variance() (arch.univariate.ARCH method), 118
compute_variance() (arch.univariate.ConstantVariance method), 84
compute_variance() (arch.univariate.EGARCH method), 102
compute_variance() (arch.univariate.EWMAVariance method), 124
compute_variance() (arch.univariate.FIGARCH method), 96

Index
compute_variance()
(arch.univariate.FixedVariance method), 135
compute_variance() (arch.univariate.GARCH method), 90
compute_variance() (arch.univariate.HARCH method), 107
compute_variance() (arch.univariate.MIDASHyperbolic method), 113
compute_variance() (arch.univariate.RiskMetrics2006 method), 129
compute_variance() (arch.univariate.volatility.VolatilityProcess method), 140
conditional_volatility
(arch.univariate.base.ARCHModelFixedResult attribute), 185
conditional_volatility
(arch.univariate.base.ARCHModelResult attribute), 178
conf_int() (arch.bootstrap.CircularBlockBootstrap method), 232
conf_int() (arch.bootstrap.IIDBootstrap method), 206
conf_int() (arch.bootstrap.IndependentSamplesBootstrap method), 215
conf_int() (arch.bootstrap.MovingBlockBootstrap method), 241
conf_int() (arch.bootstrap.StationaryBootstrap method), 224
conf_int() (arch.univariate.base.ARCHModelResult method), 174
ConstantMean (class in arch.univariate), 46
ConstantVariance (class in arch.univariate), 83
constraints() (arch.univariate.ARCH method), 119
constraints() (arch.univariate.ARX method), 55
constraints() (arch.univariate.base.ARCHModel method), 78
constraints() (arch.univariate.ConstantMean method), 48
constraints() (arch.univariate.ConstantVariance method), 85
constraints() (arch.univariate.distribution.Distribution method), 169
constraints() (arch.univariate.EGARCH method), 102
constraints() (arch.univariate.EWMAVariance method), 124
constraints() (arch.univariate.FIGARCH method), 96
constraints() (arch.univariate.FixedVariance method), 135
constraints() (arch.univariate.GeneralizedError method), 164
constraints() (arch.univariate.HARCH method), 108
constraints() (arch.univariate.HARX method), 63
constraints() (arch.univariate.LS method), 70
constraints() (arch.univariate.MIDASHyperbolic method), 113
constraints() (arch.univariate.Normal method), 150
constraints() (arch.univariate.RiskMetrics2006 method), 129
constraints() (arch.univariate.SkewStudent method), 160
constraints() (arch.univariate.StudentsT method), 155
constraints() (arch.univariate.volatility.VolatilityProcess method), 140
constraints() (arch.univariate.ZeroMean method), 40
critical_values
(arch.unitroot.ADF attribute), 276
critical_values
(arch.unitroot.DFGLS attribute), 279
critical_values
(arch.unitroot.KPSS attribute), 292
critical_values
(arch.unitroot.PhilipsPerron attribute), 283
critical_values
(arch.unitroot.VarianceRatio attribute), 288
critical_values
(arch.unitroot.ZivotAndrews attribute), 285
critical_values
(arch.utility.testing.WaldTestStatistic attribute), 186
critical_values() (arch.bootstrap.SPA method), 256
debiased (arch.unitroot.VarianceRatio attribute), 289
evaluation (arch.unitroot.ADF attribute), 277
distribution (arch.univariate.ARX attribute), 60
distribution (arch.univariate.base.ARCHModel attribute), 82
distribution (arch.univariate.ConstantMean attribute), 52
distribution (arch.univariate.HARX attribute), 68
distribution (arch.univariate.LS attribute), 76
distribution (arch.univariate.ZeroMean attribute), 45
Distribution (class in arch.univariate.distribution), 168

E
EGARCH (class in arch.univariate), 100
EWMAVariance (class in arch.univariate), 122
excluded (arch.bootstrap.MCS attribute), 261

F
FIGARCH (class in arch.univariate), 94
fit() (arch.univariate.ARX method), 55
fit() (arch.univariate.base.ARCHModel method), 78
fit() (arch.univariate.ConstantMean method), 48
fit() (arch.univariate.HARX method), 63
fit() (arch.univariate.LS method), 71
fit() (arch.univariate.ZeroMean method), 41
fit_start (arch.univariate.base.ARCHModelResult attribute), 178
fit_stop (arch.univariate.base.ARCHModelResult attribute), 178
fix() (arch.univariate.ARX method), 56
fix() (arch.univariate.base.ARCHModel method), 79
fix() (arch.univariate.ConstantMean method), 49
fix() (arch.univariate.HARX method), 64
fix() (arch.univariate.LS method), 72
fix() (arch.univariate.ZeroMean method), 42
FixedVariance (class in arch.univariate), 133
forecast() (arch.univariate.ARCH method), 119
forecast() (arch.univariate.ARCH method), 57
forecast() (arch.univariate.base.ARCHModel method), 79
forecast() (arch.univariate.base.ARCHModelFixedResult method), 181
forecast() (arch.univariate.base.ARCHModelResult method), 174
forecast() (arch.univariate.ConstantMean method), 49
forecast() (arch.univariate.ConstantVariance method), 85
forecast() (arch.univariate.EGARCH method), 102
forecast() (arch.univariate.EWMAVariance method), 124
forecast() (arch.univariate.FIGARCH method), 97
forecast() (arch.univariate.FixedVariance method), 135
forecast() (arch.univariate.GARCH method), 91
forecast() (arch.univariate.HARCH method), 108
forecast() (arch.univariate.HARX method), 65
forecast() (arch.univariate.LS method), 72
forecast() (arch.univariate.MIDASHyperbolic method), 114
forecast() (arch.univariate.RiskMetrics2006 method), 130
forecast() (arch.univariate.volatility.VolatilityProcess method), 141
forecast() (arch.univariate.ZeroMean method), 42

G
GARCH (class in arch.univariate), 88
GeneralizedError (class in arch.univariate), 163
get_state() (arch.bootstrap.CircularBlockBootstrap method), 235
get_state() (arch.bootstrap.IIDBootstrap method), 208
get_state() (arch.bootstrap.IndependentSamplesBootstrap method), 217
get_state() (arch.bootstrap.MovingBlockBootstrap method), 244
get_state() (arch.bootstrap.StationaryBootstrap method), 226

H
HARCH (class in arch.univariate), 105
HARX (class in arch.univariate), 61
hedgehog_plot() (arch.univariate.base.ARCHModelFixedResult method), 182
hedgehog_plot() (arch.univariate.base.ARCHModelResult method), 175

I
IIDBootstrap (class in arch.bootstrap), 202
included (arch.bootstrap.MCS attribute), 261
IndependentSamplesBootstrap (class in arch.bootstrap), 211
index (arch.bootstrap.CircularBlockBootstrap attribute), 237
index (arch.bootstrap.IIDBootstrap attribute), 210
index (arch.bootstrap.IndependentSamplesBootstrap attribute), 219
index (arch.bootstrap.MovingBlockBootstrap attribute), 246
index (arch.bootstrap.StationaryBootstrap attribute), 229

K
KPSS (class in arch.unitroot), 290

L
lags (arch.unitroot.ADF attribute), 276
lags (arch.unitroot.DFGLS attribute), 279
lags (arch.unitroot.KPSS attribute), 292
lags (arch.unitroot.PhillipsPerron attribute), 283
lags (arch.unitroot.VarianceRatio attribute), 289
lags (arch.unitroot.ZivotAndrews attribute), 286
loglikelihood (arch.univariate.base.ARCHModelFixedResult attribute), 185
loglikelihood (arch.univariate.base.ARCHModelResult attribute), 178
loglikelihood () (arch.univariate.distribution.Distribution method), 169
loglikelihood () (arch.univariate.GeneralizedError method), 165
loglikelihood () (arch.univariate.Normal method), 151
loglikelihood () (arch.univariate.SkewStudent method), 160
loglikelihood () (arch.univariate.StudentsT method), 155
LS (class in arch.univariate), 69

M
max_lags (arch.unitroot.ADF attribute), 276
max_lags (arch.unitroot.DFGLS attribute), 279
MCS (class in arch.bootstrap), 259
MIDASHyperbolic (class in arch.univariate), 111
model (arch.univariate.base.ARCHModelFixedResult attribute), 185
model (arch.univariate.base.ARCHModelResult attribute), 179
moment () (arch.univariate.distribution.Distribution method), 170
moment () (arch.univariate.GeneralizedError method), 165
moment () (arch.univariate.Normal method), 151
moment () (arch.univariate.SkewStudent method), 161
moment () (arch.univariate.StudentsT method), 156
MovingBlockBootstrap (class in arch.bootstrap), 238

N
name (arch.univariate.ARCH attribute), 121
name (arch.univariate.ARX attribute), 60
name (arch.univariate.base.ARCHModel attribute), 82
name (arch.univariate.ConstantMean attribute), 53
name (arch.univariate.ConstantVariance attribute), 88
name (arch.univariate.distribution.Distribution attribute), 172
name (arch.univariate.EGARCH attribute), 105
name (arch.univariate.EWMAVariance attribute), 127
name (arch.univariate.FIGARCH attribute), 99
name (arch.univariate.FixedVariance attribute), 138
name (arch.univariate.GARCH attribute), 93
name (arch.univariate.GeneralizedError attribute), 168
name (arch.univariate.HARCH attribute), 110
name (arch.univariate.HARX attribute), 68
name (arch.univariate.LS attribute), 76
name (arch.univariate.MIDASHyperbolic attribute), 116
name (arch.univariate.Normal attribute), 153
name (arch.univariate.RiskMetrics2006 attribute), 132
name (arch.univariate.SkewStudent attribute), 163
name (arch.univariate.StudentsT attribute), 158
name (arch.univariate.volatility.VolatilityProcess attribute), 143
name (arch.univariate.ZeroMean attribute), 45
nobs (arch.unitroot.ADF attribute), 276
nobs (arch.unitroot.DFGLS attribute), 280
nobs (arch.unitroot.KPSS attribute), 292
nobs (arch.unitroot.PhillipsPerron attribute), 283
nobs (arch.unitroot.VarianceRatio attribute), 289
nobs (arch.unitroot.ZivotAndrews attribute), 286
nobs (arch.univariate.base.ARCHModelFixedResult attribute), 185
nobs (arch.univariate.base.ARCHModelResult attribute), 179
Normal (class in arch.univariate), 149
null (arch.utility.testing.WaldTestStatistic attribute), 186
null_hypothesis (arch.unitroot.ADF attribute), 276
null_hypothesis (arch.unitroot.DFGLS attribute), 280
null_hypothesis (arch.unitroot.KPSS attribute), 292
null_hypothesis (arch.unitroot.PhillipsPerron attribute), 283
null_hypothesis (arch.unitroot.VarianceRatio attribute), 289
null_hypothesis (arch.unitroot.ZivotAndrews attribute), 286
num_params (arch.univariate.ARX attribute), 60
num_params (arch.univariate.base.ARCHModel attribute), 82
num_params (arch.univariate.base.ARCHModelFixedResult attribute), 185
num_params (arch.univariate.base.ARCHModelResult attribute), 179
num_params (arch.univariate.ConstantMean attribute), 53
num_params (arch.univariate.HARX attribute), 68
num_params (arch.univariate.LS attribute), 76
num_params (arch.univariate.ZeroMean attribute), 46

O
optimization_result (arch.univariate.base.ARCHModelResult attribute), 179
overlap (arch.unitroot.VarianceRatio attribute), 289

P
param_cov (arch.univariate.base.ARCHModelResult
random_state (arch.univariate.SkewStudent attribute), 163
random_state (arch.univariate.StudentsT attribute), 158
regression (arch.unitroot.ADF attribute), 277
regression (arch.unitroot.DFGLS attribute), 280
reset() (arch.bootstrap.CircularBlockBootstrap method), 235
reset() (arch.bootstrap.IIDBootstrap method), 208
reset() (arch.bootstrap.IndependentSamplesBootstrap method), 217
reset() (arch.bootstrap.MCS method), 260
reset() (arch.bootstrap.MovingBlockBootstrap method), 244
reset() (arch.bootstrap.SPA method), 256
reset() (arch.bootstrap.StationaryBootstrap method), 227
resid (arch.univariate.base.ARCHModelFixedResult attribute), 185
resid (arch.univariate.base.ARCHModelResult attribute), 179
resids() (arch.univariate.ARX method), 58
resids() (arch.univariate.base.ARCHModel method), 81
resids() (arch.univariate.ConstantMean method), 51
resids() (arch.univariate.HARX method), 66
resids() (arch.univariate.ZeroMean method), 44
RiskMetrics2006 (class in arch.univariate), 127
robust (arch.unitroot.VarianceRatio attribute), 289
rsquared (arch.univariate.base.ARCHModelResult attribute), 179
rsquared_adj (arch.univariate.base.ARCHModelResult attribute), 180

S
scale (arch.univariate.base.ARCHModelResult attribute), 180
seed() (arch.bootstrap.CircularBlockBootstrap method), 235
seed() (arch.bootstrap.IIDBootstrap method), 209
seed() (arch.bootstrap.IndependentSamplesBootstrap method), 218
seed() (arch.bootstrap.MCS method), 260
seed() (arch.bootstrap.MovingBlockBootstrap method), 244
seed() (arch.bootstrap.SPA method), 256
seed() (arch.bootstrap.StationaryBootstrap method), 227
seed() (arch.bootstrap.StepM method), 259
set_state() (arch.bootstrap.IIDBootstrap method), 209
set_state() (arch.bootstrap.IndependentSamplesBootstrap method), 218
set_state() (arch.bootstrap.MovingBlockBootstrap method), 244
set_state() (arch.bootstrap.StationaryBootstrap method), 227
simulate() (arch.univariate.ARCH method), 120
simulate() (arch.univariate.ARX method), 59
simulate() (arch.univariate.base.ARCHModel method), 81
simulate() (arch.univariate.ConstantMean method), 51
simulate() (arch.univariate.ConstantVariance method), 86
simulate() (arch.univariate.distribution.Distribution method), 171
simulate() (arch.univariate.EGARCH method), 104
simulate() (arch.univariate.EWMAVariance method), 126
simulate() (arch.univariate.FIGARCH method), 98
simulate() (arch.univariate.FixedVariance method), 137
simulate() (arch.univariate.GARCH method), 92
simulate() (arch.univariate.GeneralizedError method), 167
simulate() (arch.univariate.HARCH method), 109
simulate() (arch.univariate.HARX method), 67
simulate() (arch.univariate.LS method), 74
simulate() (arch.univariate.MIDASHyperbolic method), 115
simulate() (arch.univariate.Normal method), 153
simulate() (arch.univariate.RiskMetrics2006 method), 131
simulate() (arch.univariate.SkewStudent method), 162
simulate() (arch.univariate.StudentsT method), 157
simulate() (arch.univariate.volatility.VolatilityProcess method), 142
SkewStudent (class in arch.univariate), 158
SPA (class in arch.bootstrap), 254
start (arch.univariate.ARCH attribute), 121
start (arch.univariate.ConstantVariance attribute), 88
start (arch.univariate.EGARCH attribute), 105
start (arch.univariate.EWMAVariance attribute), 127
start (arch.univariate.FIGARCH attribute), 99
start (arch.univariate.FixedVariance attribute), 138
start (arch.univariate.GARCH attribute), 93
start (arch.univariate.HARCH attribute), 110
start (arch.univariate.MIDASHyperbolic attribute), 116
start (arch.univariate.RiskMetrics2006 attribute), 133
start (arch.univariate.volatile.VolatilityProcess attribute), 143
starting_values() (arch.univariate.ARCH method), 121
starting_values() (arch.univariate.ARX method), 60
starting_values() (arch.univariate.base.ARCModel method), 82
starting_values() (arch.univariate ConstantMean method), 52
starting_values() (arch.univariate.ConstantVariance method), 87
starting_values() (arch.univariate.distribution.Distribution method), 172
starting_values() (arch.univariate.EGARCH method), 104
starting_values() (arch.univariate.EWMAVariance method), 126
starting_values() (arch.univariate.FIGARCH method), 98
starting_values() (arch.univariate.FixedVariance method), 137
starting_values() (arch.univariate.GARCH method), 93
starting_values() (arch.univariate.GenerlizedError method), 167
starting_values() (arch.univariate.HARCH method), 110
starting_values() (arch.univariate.HARX method), 68
starting_values() (arch.univariate.LS method), 75
starting_values() (arch.univariate.MIDASHyperbolic method), 115
starting_values() (arch.univariate Normal method), 153
starting_values() (arch.univariate.RiskMetrics2006 method), 132
starting_values() (arch.univariate.SkewStudent method), 162
starting_values() (arch.univariate.StudentsT method), 158
starting_values() (arch.univariate.volatile.VolatilityProcess method), 142
starting_values() (arch.univariate.ZoneMean method), 45
stat (arch.unitroot.ADF attribute), 277
stat (arch.unitroot.DFGLS attribute), 280
stat (arch.unitroot.KPSS attribute), 293
stat (arch.unitroot.PhillipsPerron attribute), 283
stat (arch.unitroot.VarianceRatio attribute), 290
stat (arch.unitroot.ZivotAndrews attribute), 286
stat (arch.utility.testing.WaldTestStatistic attribute), 186
StationaryBootstrap (class in arch.bootstrap), 220
std_err (arch.univariate.base.ARCHModelResult attribute), 180
std_resid (arch.univariate.base.ARCHModelFixedResult attribute), 186
StepM (class in arch.bootstrap), 257
stop (arch.univariate.ARCH attribute), 122
stop (arch.univariate.ConstantVariance attribute), 88
stop (arch.univariate.EGARCH attribute), 105
stop (arch.univariate.EWMAVariance attribute), 127
stop (arch.univariate.FIGARCH attribute), 99
stop (arch.univariate.FixedVariance attribute), 138
stop (arch.univariate.GARCH attribute), 94
stop (arch.univariate.HARCH attribute), 111
stop (arch.univariate.MIDASHyperbolic attribute), 116
stop (arch.univariate.RiskMetrics2006 attribute), 133
stop (arch.univariate.volatility.VolatilityProcess attribute), 143
StudentsT (class in arch.univariate), 154
subset() (arch.bootstrap.SPA method), 257
summary() (arch.unitroot.ADF method), 275
summary() (arch.unitroot.DFGLS method), 278
summary() (arch.unitroot.KPSS method), 291
summary() (arch.unitroot.PhillipsPerron method), 282
summary() (arch.unitroot.VarianceRatio method), 288
summary() (arch.unitroot.ZivotAndrews method), 285
summary() (arch.univariate.base.ARCHModelFixedResult method), 184
summary() (arch.univariate.base.ARCHModelResult method), 177
superior_models (arch.bootstrap.StepM attribute), 259
T
test_type (arch.unitroot.PhillipsPerron attribute), 283
trend (arch.unitroot.ADF attribute), 277
trend (arch.unitroot.DFGLS attribute), 280
trend (arch.unitroot.KPSS attribute), 293
trend (arch.unitroot.PhillipsPerron attribute), 284
trend (arch.unitroot.VarianceRatio attribute), 290
trend (arch.unitroot.ZivotAndrews attribute), 286
truncation (arch.univariate.FIGARCH attribute), 100
tvalues (arch.univariate.base.ARCHModelResult attribute), 180

U
update_indices() (arch.bootstrap.CircularBlockBootstrap method), 236
update_indices() (arch.bootstrap.IIDBootstrap method), 209
update_indices() (arch.bootstrap.IndependentSamplesBootstrap method), 218
update_indices() (arch.bootstrap.MovingBlockBootstrap method), 245
update_indices() (arch.bootstrap.StationaryBootstrap method), 227

V
valid_trends (arch.unitroot.ADF attribute), 277
valid_trends (arch.unitroot.DFGLS attribute), 280
valid_trends (arch.unitroot.KPSS attribute), 293
valid_trends (arch.unitroot.PhilipsPerron attribute), 284
valid_trends (arch.unitroot.VarianceRatio attribute), 290
valid_trends (arch.unitroot.ZivotAndrews attribute), 287
var() (arch.bootstrap.CircularBlockBootstrap method), 236
var() (arch.bootstrap.IIDBootstrap method), 209
var() (arch.bootstrap.IndependentSamplesBootstrap method), 218
var() (arch.bootstrap.MovingBlockBootstrap method), 245
var() (arch.bootstrap.StationaryBootstrap method), 227
variance_bounds() (arch.univariate.ARCH method), 121
variance_bounds() (arch.univariate.ConstantVariance method), 87
variance_bounds() (arch.univariate.EGARCH method), 104
variance_bounds() (arch.univariate.EWMAVariance method), 126
variance_bounds() (arch.univariate.FIGARCH method), 99
variance_bounds() (arch.univariate.FixedVariance method), 137
variance_bounds() (arch.univariate.GARCH method), 93
variance_bounds() (arch.univariate.HARCH method), 110
variance_bounds() (arch.univariate.MIDASHyperbolic method), 116

WaldTestStatistic (class in arch.utility.testing), 186

X
x (arch.univariate.ARX attribute), 61
x (arch.univariate.ConstantMean attribute), 53
x (arch.univariate.HARX attribute), 69
x (arch.univariate.LS attribute), 76
x (arch.univariate.ZeroMean attribute), 46

Y
y (arch.unitroot.ADF attribute), 277
y (arch.unitroot.DFGLS attribute), 281
y (arch.unitroot.KPSS attribute), 293
y (arch.unitroot.PhilipsPerron attribute), 284
y (arch.unitroot.VarianceRatio attribute), 290
y (arch.unitroot.ZivotAndrews attribute), 287
y (arch.univariate.ARX attribute), 61
y (arch.univariate.base.ARCHModel attribute), 83
y (arch.univariate.ConstantMean attribute), 53
y (arch.univariate.HARX attribute), 69
y (arch.univariate.LS attribute), 76
y (arch.univariate.ZeroMean attribute), 46

Z
ZeroMean (class in arch.univariate), 39
ZivotAndrews (class in arch.unitroot), 284